# SPECIFICATIONS FOR LIQUID CRYSTAL DISPLAY MODULE

## MODEL NO: ALP100010-60RGB-UR

| <b>CUSTOMER:</b>        |   |
|-------------------------|---|
| APPROVED SIGNATURE      |   |
|                         |   |
|                         |   |
|                         |   |
|                         |   |
|                         |   |
|                         |   |
| DSGD:                   |   |
|                         |   |
| CHKD : Peter            |   |
| CHKD . I etel           | - |
|                         |   |
| APPD: Peng Jun          | - |
|                         |   |
| <b>DATE: 2019-03-20</b> |   |
|                         |   |

# YUDU AMSON ELECTRONICS CO.,LTD.

YuDu Industrial Garden, Ganzhou City, Jiang Xi, China

TEL: 86-797-6330063 FAX: 86-797-6330055



| Revision Record |            |                    |         |                        |  |  |
|-----------------|------------|--------------------|---------|------------------------|--|--|
| No.             | Date       | Model No.          | Version | Remarks                |  |  |
| 1               | 2019-03-20 | ALP100010-60RGB-UR | REV.0   | Spec<br>RoHs-Compliant |  |  |
|                 |            |                    |         |                        |  |  |
|                 |            |                    |         |                        |  |  |
|                 |            |                    |         |                        |  |  |
|                 |            |                    |         |                        |  |  |
|                 |            |                    |         |                        |  |  |
|                 |            |                    |         |                        |  |  |
|                 |            |                    |         |                        |  |  |
|                 |            |                    |         |                        |  |  |
|                 |            |                    |         |                        |  |  |
|                 |            |                    |         |                        |  |  |
|                 |            |                    |         |                        |  |  |
|                 |            |                    |         |                        |  |  |
|                 |            |                    |         |                        |  |  |
|                 |            |                    |         |                        |  |  |
|                 |            |                    |         |                        |  |  |
|                 |            |                    |         |                        |  |  |
|                 |            |                    |         |                        |  |  |
|                 |            |                    |         |                        |  |  |
|                 |            |                    |         |                        |  |  |



## **MECHANICAL SPECIFICATION**

| ITEM                  | DESCRIPTION                  |
|-----------------------|------------------------------|
| Product No.           | ALP100010-60RGB-UR           |
| Controller Board Size | 40.0(W)×20.0(H)×8.1max(D) mm |
| Light Bar Size        | 1004.0(W)×10.0(H)×3.0(D) mm  |
| Controller Interface  | STM32F030C8T6 UART           |
| ROM Selection         | -                            |
| Built-in              | With DC/DC Converter         |
| Module Weight         | T.B.D                        |

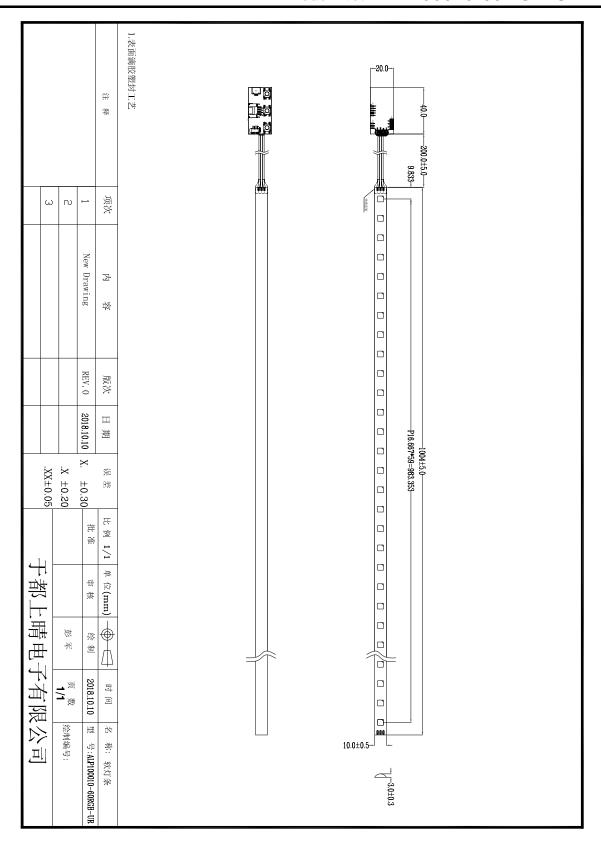
## PIN ASSIGNMENTS CN1

| Pin No. | Pin Out     | Level | Description            |  |
|---------|-------------|-------|------------------------|--|
| 1.      | TX1         | H/L   | Serial Transmit Signal |  |
| 2.      | RX1         | H/L   | Serial Receive Signal  |  |
| 3.      | +5 <b>V</b> | +5V   | Power Supply Voltage   |  |
| 4.      | VSS         | 0V    | Power Supply Ground    |  |

## **USB**

| Pin No. | Pin Out | Level | Description          |  |
|---------|---------|-------|----------------------|--|
| 1.      | +5V     | +5V   | Power Supply Voltage |  |
| 2.      | NC      |       | No connect           |  |
| 3.      | NC      |       | No connect           |  |
| 4.      | NC      |       | No connect           |  |
| 5.      | VSS     | 0V    | Power Supply Ground  |  |




# Key

| Pin No.                         | Description                      |  |
|---------------------------------|----------------------------------|--|
| S1                              | Set the dynamic function         |  |
| S2 Set dynamic fucntion's speed |                                  |  |
| <b>S</b> 3                      | Set the dynamic fucntion's color |  |

# **ELECTRO-OPTICAL CHARACTERISTIC TA=25°C**

| Symbol | Parameter                 | Condition | Min.     | Typ. | Max.    | Units |
|--------|---------------------------|-----------|----------|------|---------|-------|
| VDD    | Power Supply              |           |          | 5.0  | 5.5     |       |
| VIH    | Input High Voltage        |           | 0.7VDD   |      | VDD+0.3 | V     |
| VIL    | Input Low Voltage         |           | VSS -0.3 |      | 0.3VDD  |       |
| IDD    | Power Supply current      | @VDD=5V   | 70       | -    | 2230    | Ma    |
|        | PEAK WAVELENGTH (PER DOT) | R         | 620      |      | 625     |       |
|        |                           | G         | 522      |      | 525     | NM    |
|        |                           | В         | 467.5    |      | 470     |       |
|        | LUMINOUS INTENSITY        | R         | 360      |      | 500     |       |
|        | (PER DOT)                 | G         | 1100     |      | 1800    | MCD   |
|        |                           | В         | 200      |      | 800     |       |
| FOSC   | Oscillator Frequency      |           |          | 800  |         | KHz   |







ezDisplay RGB Ring and Stripe Command List

| Digital RGB LED Ring and Stripe has 256 grayscale for each |                                                          |                                                                                                                                                                                                                                                   |                                                                                                        |  |
|------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|
| Code                                                       | Function                                                 | Instruction of AT Command mode                                                                                                                                                                                                                    | API for C code                                                                                         |  |
| 0xc0                                                       | Set the color of desinated pixel                         | atc0=(address of pixel, grayscale of R 0~255, grayscale of G 0~255, grayscale of B 0~255)     Wait until receive a device available byte ('E') from Ring or Stripe <example> atc0=(0,255,255,0)</example>                                         | printf("atc0=(%d,%d,%d,%d)",address,R,<br>G,B);<br>while (USART_ReceiveData(UART1)!=<br>'E') {}        |  |
| 0xc1                                                       | Set the color of<br>desinated pixels<br>within a section | 1. atc1=(address of the start pixel, address of the end pixel, grayscale of R 0~255, grayscale of G 0~255, grayscale of B 0~255) 2. Wait until receive a device available byte ('E') from Ring or Stripe <example> atc1=(18,25,0,100,0)</example> | printf("atc1=(%d,%d,%d,%d,%d,)",addres s1,address2,R,G,B); while (USART_ReceiveData(UART1)!= 'E') {}   |  |
| 0xc2                                                       | Set the color<br>randomly for each<br>pixel of ring      | 1. atc2=() 2. Wait until receive a device available byte ('E') from Ring or Stripe <example> atc2=()</example>                                                                                                                                    | printf("atc2=()");<br>while (USART_ReceiveData(UART1)!=<br>'E') {}                                     |  |
| 0xc3                                                       | Turn the ring pixels<br>clockwise one<br>round           | 1. atc3=(speed of turning 1~30) 2. Wait until receive a device available byte ('E') from Ring or Stripe <example> atc3=(10)</example>                                                                                                             | printf("atc3=(%d)",speed);<br>while (USART_ReceiveData(UART1)!=<br>'E') {}                             |  |
| 0xc4                                                       | Turn the ring pixels<br>counter clockwise<br>one round   | 1. atc4=(speed of turning 1~30) 2. Wait until receive a device available byte ('E') from Ring or Stripe <example> atc4=(10)</example>                                                                                                             | printf("atc4=(%d)",speed);<br>while (USART_ReceiveData(UART1)!=<br>'E') {}                             |  |
| 0xc5                                                       | Turn one pixels<br>Clockwise                             | 1. atc5=(speed of shifting 1~30) 2. Wait until receive a device available byte ('E') from Ring or Stripe <example> atcb=(10)</example>                                                                                                            | printf("atc5=(%d)",speed);<br>while (USART_ReceiveData(UART1)!=<br>'E') {}                             |  |
| 0xc6                                                       | Turn one pixels<br>Counter clockwise                     | 1. atc6=(speed of shifting 1~30) 2. Wait until receive a device available byte ('E') from Ring or Stripe <example> atcc=(10)</example>                                                                                                            | printf("atc6=(%d)",speed);<br>while (USART_ReceiveData(UART1)!=<br>'E') {}                             |  |
| 0xc7                                                       | Flash one<br>desinated pixle                             | 1. atc7=(address of pixel, speed of flashing 1~100) 2. Wait until receive a device available byte ('E') from Ring or Stripe <example> atc7=(0,50)</example>                                                                                       | printf("atc7=(%d,%d)",address,speed);<br>while (USART_ReceiveData(UART1)!=<br>'E') {}                  |  |
| 0xc8                                                       | Flash desinated pixels within a section                  | atc8=(address of the start pixel, address of the end pixel, speed of flashing 1~100)     Wait until receive a device available byte ('E') from Ring or Stripe <example> atc8=(2,5,50)</example>                                                   | printf("atc8=(%d,%d,%d)",address1,addr<br>ess2,speed);<br>while (USART_ReceiveData(UART1)!=<br>'E') {} |  |
| 0xc9                                                       | Flash whole ring                                         | 1. atc9=(speed of flashing 1~100) 2. Wait until receive a device available byte ('E') from Ring or Stripe <example> atc9=(50)</example>                                                                                                           | printf("atc9=(%d)",speed);<br>while (USART_ReceiveData(UART1)!=<br>'E') {}                             |  |
| 0xca                                                       | Breath effect of<br>whole ring for 7<br>major colors     | 1. atca=(0 or 1 for R, 0 or1 for G, 0 or 1 for B) 2. Wait until receive a device available byte ('E') from Ring or Stripe <example> atca=(0,0,1)</example>                                                                                        | printf("atca=(%d,%d,%d)",R,G,B);<br>while (USART_ReceiveData(UART1)!=<br>'E') {}                       |  |
| 0xcd                                                       | Set the dynamic fucntion's color                         | 1. atcd=(grayscale of R 0~255, grayscale of G 0~255, grayscale of B 0~255) 2. Wait until receive a device available byte ('E') from Ring or Stripe <example> atcd=(128,9,18)</example>                                                            | printf("atcd=(%d,%d,%d)",R,G,B);<br>while (USART_ReceiveData(UART1)!=<br>'E') {}                       |  |



| 0xce | Set the dynamic fucntion's speed                                                  | 1. atce=(speed 1~100) 2. Wait until receive a device available byte ('E') from Ring or Stripe <example> atce=(5)</example>                                                                                           | printf("atce=(%d)",speed);<br>while (USART_ReceiveData(UART1)!=<br>'E') {}           |
|------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| 0xcf | Set the pixel number of ring                                                      | 1. atcf=(number of pixels of ring 1~120) 2. Wait until receive a device available byte ('E') from Ring or Stripe <example> atcf=(48)</example>                                                                       | printf("atcc=(%d)",Number_of_Pixel);<br>while (USART_ReceiveData(UART1)!=<br>'E') {} |
| 0xd0 | Clear display                                                                     | 1. atd0=() 2. Wait until receive a device available byte ('E') from Ring or Stripe <example> atd0=()</example>                                                                                                       | printf("atd0=()"); while (USART_ReceiveData(UART1)!= 'E') {}                         |
| 0x10 | Fill pixel one by<br>one, strat from last<br>pixel                                | 1. at10=(grayscale of R 0~255, grayscale of G 0~255, grayscale of B 0~255, speed of filling 1~30) 2. Wait until receive a device available byte ('E') from Ring or Stripe <example> at10=(0,105,0,5)</example>       | printf("at10=(%d,%d,%d,%d)",R,G,B,spe ed); while (USART_ReceiveData(UART1)!= 'E') {} |
| 0x11 | Fill pixel one by<br>one, strat from first<br>pixel                               | 1. at11=(grayscale of R 0~255, grayscale of G 0~255, grayscale of B 0~255, speed of filling 1~30) 2. Wait until receive a device available byte ('E') from Ring or Stripe <example> at11=(0,105,0,2)</example>       | printf("at11=(%d,%d,%d,%d)",R,G,B,spe ed); while (USART_ReceiveData(UART1)!= 'E') {} |
| 0x12 | Stack pixel one by<br>one clockwise then<br>turn off pixel<br>counterclockwise    | at12=(grayscale of R 0~255, grayscale of G 0~255, grayscale of B 0~255, speed of stacking 1~30)     Wait until receive a device available byte ('E') from Ring or Stripe <example> at12=(0,10,255,5)</example>       | printf("at12=(%d,%d,%d,%d)",R,G,B,spe ed); while (USART_ReceiveData(UART1)!= 'E') {} |
| 0x13 | Stack pixel one by<br>one<br>counterclockwise<br>then turn off pixel<br>clockwise | 1. at13=(grayscale of R 0~255, grayscale of G 0~255, grayscale of B 0~255, speed of stacking 1~30) 2. Wait until receive a device available byte ('E') from Ring or Stripe <example> at13=(255,0,0,10)</example>     | printf("at13=(%d,%d,%d,%d)",R,G,B,spe ed); while (USART_ReceiveData(UART1)!= 'E') {} |
| 0x14 | Two pixels collision then firework                                                | 1. at14=(grayscale of R 0~255, grayscale of G 0~255, grayscale of B 0~255, speed of stacking 1~30) 2. Wait until receive a device available byte ('E') from Ring or Stripe <example> at14=(0,255,0,10)</example>     | printf("at14=(%d,%d,%d,%d)",R,G,B,spe ed); while (USART_ReceiveData(UART1)!= 'E') {} |
| 0x15 | Two stack pixels collision then firework                                          | 1. at15=(grayscale of R 0~255, grayscale of G 0~255, grayscale of B 0~255, speed of stacking 1~30) 2. Wait until receive a device available byte ('E') from Ring or Stripe <example> at15=(0,255,0,10)</example>     | printf("at15=(%d,%d,%d,%d)",R,G,B,spe ed); while (USART_ReceiveData(UART1)!= 'E') {} |
| 0x16 | Two pixels<br>collision then<br>bounce back                                       | 1. at16=(grayscale of R 0~255, grayscale of G 0~255, grayscale of B 0~255, speed of stacking 1~30) 2. Wait until receive a device available byte ('E') from Ring or Stripe <example> at16=(255,255,255,10)</example> | printf("at16=(%d,%d,%d,%d)",R,G,B,spe ed); while (USART_ReceiveData(UART1)!= 'E') {} |
| 0x17 | Two stack pixels collision then fade back                                         | 1. at17=(grayscale of R 0~255, grayscale of G 0~255, grayscale of B 0~255, speed of stacking 1~30) 2. Wait until receive a device available byte ('E') from Ring or Stripe <example> at17=(0,255,100,10)</example>   | printf("at17=(%d,%d,%d,%d)",R,G,B,spe ed); while (USART_ReceiveData(UART1)!= 'E') {} |
| 0xf2 | Set the Dimming level  * Only available for Dimmable LEDs                         | 1. atf2=(Dimming level 0~31) 2. Wait until receive a device available byte ('E') from Ring or Stripe <example> atf2=(7)</example>                                                                                    | printf("atf2=(%d)",Dimming);<br>while (USART_ReceiveData(UART1)!=<br>'E') {}         |



|      |                          | atfd=(Function Code 0~20)     Wait until receive a device available byte ('E') from Ring or Stripe  Function code> | printf("atfd=(%d)",Function);<br>while (USART_ReceiveData(UART1)!= |
|------|--------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| 0xfd | Set the dynamic function | <ul> <li><function code=""></function></li> <li>0 : Stop the auto run back to static mode</li></ul>                | 'E') {}                                                            |