SPECIFICATIONS FOR LIQUID CRYSTAL DISPLAY MODULE

MODEL NO : ALP100010-60RGBD01-UR

CUSTOMER :

APPROVED SIGNATURE

DSGD :

CHKD : Peter

APPD : Peng Jun

DATE : 2019-03-19

YUDU AMSON ELECTRONICS CO.,LTD.

YuDu Industrial Garden, Ganzhou City, JiangXi, China

TEL: 86-797-6330063 FAX: 86-797-6330055

Revision Record						
No.	Date	Model No.	Version	Remarks		
1	2019-03-19	ALP100010-60RGBD01-UR	REV.0	Spec RoHs-Compliant		

MECHANICAL SPECIFICATION

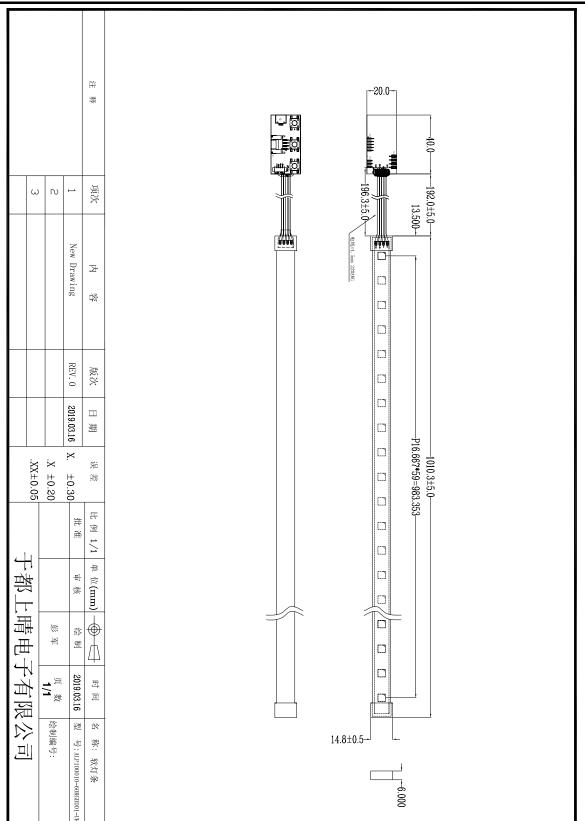
ITEM	DESCRIPTION
Product No.	ALP100010-60RGBD01-UR
Controller Board Size	40.0(W)×20.0(H)×8.1max(D) mm
Light Bar Size	1010.3(W)×14.8(H)×6.0(D) mm
Controller Interface	STM32F030C8T6 UART
ROM Selection	-
Built-in	With DC/DC Converter
Module Weight	T.B.D

PIN ASSIGNMENTS CN1

Pin No.	Pin Out	Level	Description	
1.	TX1	H/L	Serial Transmit Signal	
2.	RX1	H/L	Serial Receive Signal	
3.	+5V	+5V	Power Supply Voltage	
4.	VSS	0V	Power Supply Ground	

USB

Pin No.	Pin Out	Level	Description	
1.	+5V	+5V	Power Supply Voltage	
2.	NC		No connect	
3.	NC		No connect	
4.	NC		No connect	
5.	VSS	0V	Power Supply Ground	


Key

Pin No.	Description	
S1	Set the dynamic function	
S2	Set dynamic fucntion's speed	
S3	Set the dynamic fucntion's color	

ELECTRO-OPTICAL CHARACTERISTIC TA=25°C

Symbol	Parameter	Condition	Min.	Тур.	Max.	Units
VDD	Supply Voltage			5.0	5.5	
VIH	Input High Voltage		0.7VDD		VDD+0.3	V
VIL	Input Low Voltage		VSS -0.3		0.3VDD	
IDD	Power Supply current	@VDD=5V	180	-	1260	MA
	PEAK WAVELENGTH (PER DOT)	R	620		625	
		G	522.5		525	NM
		В	467.5		470	
	LUMINOUS INTENSITY	R	360		400	
	(PER DOT)	G	550		600	MCD
		В	140		150	
FOSC	Oscillator Frequency			5.1		MHz

	ezDisplay RGB Ring and Stripe Command List						
		Digital RGB LED Ring and Stripe has 256 grayscale	LED Ring and Stripe has 256 grayscale for each primary				
Code	Function	Instruction of AT Command mode	API for C code				
0xc0	Set the color of desinated pixel	1. atc0=(address of pixel, grayscale of R 0~255, grayscale of G 0~255, grayscale of B 0~255) 2. Wait until receive a device available byte ('E') from Ring or Stripe <example> atc0=(0,255,255,0)</example>	printf("atc0=(%d,%d,%d,%d)",address,R, G,B); while (USART_ReceiveData(UART1)!= 'E') {}				
0xc1	Set the color of desinated pixels within a section	 atc1=(address of the start pixel, address of the end pixel, grayscale of R 0~255, grayscale of G 0~255, grayscale of B 0~255) Wait until receive a device available byte ('E') from Ring or Stripe "> atc1=(18,25,0,100,0) 	printf("atc1=(%d,%d,%d,%d,%d)",addres s1,address2,R,G,B); while (USART_ReceiveData(UART1)!= 'E') {}				
0xc2	Set the color randomly for each pixel of ring	1. atc2=() 2. Wait until receive a device available byte ('E') from Ring or Stripe <example> atc2=()</example>	printf("atc2=()"); while (USART_ReceiveData(UART1)!= 'E') {}				
0xc3	Turn the ring pixels clockwise one round	1. atc3=(speed of turning 1~30) 2. Wait until receive a device available byte ('E') from Ring or Stripe <example> atc3=(10)</example>	printf("atc3=(%d)",speed); while (USART_ReceiveData(UART1)!= 'E') {}				
0xc4	Turn the ring pixels counter clockwise one round	1. atc4=(speed of turning 1~30) 2. Wait until receive a device available byte ('E') from Ring or Stripe <example> atc4=(10)</example>	printf("atc4=(%d)",speed); while (USART_ReceiveData(UART1)!= 'E') {}				
0xc5	Turn one pixels Clockwise	1. atc5=(speed of shifting 1~30) 2. Wait until receive a device available byte ('E') from Ring or Stripe <example> atcb=(10)</example>	printf("atc5=(%d)",speed); while (USART_ReceiveData(UART1)!= 'E') {}				
0xc6	Turn one pixels Counter clockwise	1. atc6=(speed of shifting 1~30) 2. Wait until receive a device available byte ('E') from Ring or Stripe <example> atcc=(10)</example>	printf("atc6=(%d)",speed); while (USART_ReceiveData(UART1)!= 'E') {}				
0xc7	Flash one desinated pixle	 atc7=(address of pixel, speed of flashing 1~100) Wait until receive a device available byte ('E') from Ring or Stripe <example> atc7=(0,50)</example> 	printf("atc7=(%d,%d)",address,speed); while (USART_ReceiveData(UART1)!= 'E') {}				
0xc8	Flash desinated pixels within a section	1. atc8=(address of the start pixel, address of the end pixel, speed of flashing 1~100) 2. Wait until receive a device available byte ('E') from Ring or Stripe <example> atc8=(2,5,50)</example>	printf("atc8=(%d,%d,%d)",address1,addr ess2,speed); while (USART_ReceiveData(UART1)!= 'E') {}				
0xc9	Flash whole ring	1. atc9=(speed of flashing 1~100) 2. Wait until receive a device available byte ('E') from Ring or Stripe <example> atc9=(50)</example>	printf("atc9=(%d)",speed); while (USART_ReceiveData(UART1)!= 'E') {}				
0xca	Breath effect of whole ring for 7 major colors	1. atca=(0 or 1 for R, 0 or1 for G, 0 or 1 for B) 2. Wait until receive a device available byte ('E') from Ring or Stripe <example> atca=(0,0,1)</example>	printf("atca=(%d,%d,%d)",R,G,B); while (USART_ReceiveData(UART1)!= 'E') {}				
0xcd	Set the dynamic fucntion's color	1. atcd=(grayscale of R 0~255, grayscale of G 0~255, grayscale of B 0~255) 2. Wait until receive a device available byte ('E') from Ring or Stripe <example> atcd=(128,9,18)</example>	printf("atcd=(%d,%d,%d)",R,G,B); while (USART_ReceiveData(UART1)!= 'E') {}				

r			
0xce	Set the dynamic fucntion's speed	1. atce=(speed 1~100) 2. Wait until receive a device available byte ('E') from Ring or Stripe <example> atce=(5)</example>	printf("atce=(%d)",speed); while (USART_ReceiveData(UART1)!= 'E') {}
0xcf	Set the pixel number of ring	 atcf=(number of pixels of ring 1~120) Wait until receive a device available byte ('E') from Ring or Stripe <example> atcf=(48)</example> 	printf("atcc=(%d)",Number_of_Pixel); while (USART_ReceiveData(UART1)!= 'E') {}
0xd0	Clear display	1. atd0=() 2. Wait until receive a device available byte ('E') from Ring or Stripe <example> atd0=()</example>	printf("atd0=()"); while (USART_ReceiveData(UART1)!= 'E') {}
0x10	Fill pixel one by one, strat from last pixel	 at10=(grayscale of R 0~255, grayscale of G 0~255, grayscale of B 0~255, speed of filling 1~30) Wait until receive a device available byte ('E') from Ring or Stripe <example> at10=(0,105,0,5)</example> 	printf("at10=(%d,%d,%d,%d)",R,G,B,spe ed); while (USART_ReceiveData(UART1)!= 'E') {}
0x11	Fill pixel one by one, strat from first pixel	1. at11=(grayscale of R 0~255, grayscale of G 0~255, grayscale of B 0~255, speed of filling 1~30) 2. Wait until receive a device available byte ('E') from Ring or Stripe <example> at11=(0,105,0,2)</example>	printf("at11=(%d,%d,%d,%d)",R,G,B,spe ed); while (USART_ReceiveData(UART1)!= 'E') {}
0x12	Stack pixel one by one clockwise then turn off pixel counterclockwise	1. at12=(grayscale of R 0~255, grayscale of G 0~255, grayscale of B 0~255, speed of stacking 1~30) 2. Wait until receive a device available byte ('E') from Ring or Stripe <example> at12=(0,10,255,5)</example>	printf("at12=(%d,%d,%d,%d)",R,G,B,spe ed); while (USART_ReceiveData(UART1)!= 'E') {}
0x13	Stack pixel one by one counterclockwise then turn off pixel clockwise	1. at13=(grayscale of R 0~255, grayscale of G 0~255, grayscale of B 0~255, speed of stacking 1~30) 2. Wait until receive a device available byte ('E') from Ring or Stripe <example> at13=(255,0,0,10)</example>	printf("at13=(%d,%d,%d,%d)",R,G,B,spe ed); while (USART_ReceiveData(UART1)!= 'E') {}
0x14	Two pixels collision then firework	1. at14=(grayscale of R 0~255, grayscale of G 0~255, grayscale of B 0~255, speed of stacking 1~30) 2. Wait until receive a device available byte ('E') from Ring or Stripe <example> at14=(0,255,0,10)</example>	printf("at14=(%d,%d,%d,%d)",R,G,B,spe ed); while (USART_ReceiveData(UART1)!= 'E') {}
0x15	Two stack pixels collision then firework	1. at15=(grayscale of R 0~255, grayscale of G 0~255, grayscale of B 0~255, speed of stacking 1~30) 2. Wait until receive a device available byte ('E') from Ring or Stripe <example> at15=(0,255,0,10)</example>	printf("at15=(%d,%d,%d,%d)",R,G,B,spe ed); while (USART_ReceiveData(UART1)!= 'E') {}
0x16	Two pixels collision then bounce back	1. at16=(grayscale of R 0~255, grayscale of G 0~255, grayscale of B 0~255, speed of stacking 1~30) 2. Wait until receive a device available byte ('E') from Ring or Stripe <example> at16=(255,255,255,10)</example>	printf("at16=(%d,%d,%d,%d)",R,G,B,spe ed); while (USART_ReceiveData(UART1)!= 'E') {}
0x17	Two stack pixels collision then fade back	 at17=(grayscale of R 0~255, grayscale of G 0~255, grayscale of B 0~255, speed of stacking 1~30) Wait until receive a device available byte ('E') from Ring or Stripe <example> at17=(0,255,100,10)</example> 	printf("at17=(%d,%d,%d,%d)",R,G,B,spe ed); while (USART_ReceiveData(UART1)!= 'E') {}
0xf2	Set the Dimming level * Only available for Dimmable LEDs	1. atf2=(Dimming level 0~31) 2. Wait until receive a device available byte ('E') from Ring or Stripe <example> atf2=(7)</example>	printf("atf2=(%d)",Dimming); while (USART_ReceiveData(UART1)!= 'E') {}

0xfd	Set the dynamic function	 attd=(Function Code 0-20) Wait until receive a device available byte ('E') from Ring or Stripe Function code> Stop the auto run back to static mode 1-20 are auto run mode. The display speed and color can be determinated by atcc and atcd command accordingly Breath (for red, green, blue, yellow, cyan, magenta & white only) Randomly color display for whole ring Turn one pixel clockwise Turn one pixel counter clockwise (for red, green, blue, yellow, cyan, magenta & white only) Turn comet section pixels counter clockwise (for red, green, blue, yellow, cyan, magenta & white only) Turn comet section pixels counter clockwise (for red, green, blue, yellow, cyan, magenta & white only) Turn comet section pixels counter clockwise (for red, green, blue, yellow, cyan, magenta & white only) Turn comet section pixels bounce around (for red, green, blue, yellow, cyan, magenta & white only) Turn ring display menory data clockwise (Ring display memory can be determinated by atc0 or atc1command) Turn ring display menory data counter clockwise (Ring display memory can be determinated by atc0 or atc1command) Flil pixel one by one start from last pixel Fill pixel one by one start from first pixel Fill pixel one by one clockwise then disappear one by one counter clockwise Fill pixel one by one clockwise then disappear one by one counter clockwise Show the ring display memory data one by one then disappear one by one clockwise Show the ring display memory data one by one then disappear one by one clockwise Two pixels collide then firework effect Two pixels collide then bounce back	printf("atfd=(%d)",Function); while (USART_ReceiveData(UART1)!= 'E') {}
------	-----------------------------	---	---