

# **Specification for Approval**

| Customer: |  |
|-----------|--|
|           |  |

Model Name:

| Si           | upplier Approv | Customer approval |  |
|--------------|----------------|-------------------|--|
| R&D Designed | R&D Approved   | QC Approved       |  |
| Peter        | Peng Jun       |                   |  |



## Revision Record

| REV NO. | REV DATE   | CONTENTS  | Note |
|---------|------------|-----------|------|
| А       | 2023/10/31 | NEW ISSUE |      |
|         |            |           |      |
|         |            |           |      |
|         |            |           |      |
|         |            |           |      |
|         |            |           |      |
|         |            |           |      |
|         |            |           |      |
|         |            |           |      |
|         |            |           |      |
|         |            |           |      |
|         |            |           |      |
|         |            |           |      |
|         |            |           |      |
|         |            |           |      |
|         |            |           |      |
|         |            |           |      |
|         |            |           |      |
|         |            |           |      |
|         |            |           |      |
|         |            |           |      |
|         |            |           |      |
|         |            |           |      |



### Contents

| No.  | Items                                                | Page |
|------|------------------------------------------------------|------|
| 1.0  | General Description                                  | 4    |
| 2.0  | Absolute Maximum Ratings                             | 6    |
| 3.0  | Electrical Specifications                            | 7    |
| 4.0  | Optical Specifications                               | 11   |
| 5.0  | Interface Connection                                 | 16   |
| 6.0  | Signal Timing Specification                          | 20   |
| 7.0  | Input Signals, Display Colors & Gray Scale of Colors | 25   |
| 8.0  | Power Sequence                                       | 26   |
| 9.0  | Connector Description                                | 28   |
| 10.0 | Mechanical Characteristics                           | 29   |
| 11.0 | Reliability Test                                     | 30   |
| 12.0 | Handling & Cautions                                  | 31   |
| 13.0 | Label                                                | 32   |
| 14.0 | Packing Information                                  | 34   |
| 15.0 | Mechanical Outline Dimension                         | 35   |
| 16.0 | EDID Table                                           | 36   |
| 17.0 | General Precautions                                  | 41   |
| 18.0 | Appendix                                             | 43   |



### **1.0 GENERAL DESCRIPTION**

#### **1.1 Introduction**

AM-19201080-156E is a color active matrix TFT LCD module using amorphous silicon TFT's (Thin Film Transistors) as an active switching devices. This module has a 15.6 inch diagonally measured active area with Full-HD resolutions (1920 horizontal by 1080 vertical pixel array). Each pixel is divided into RED, GREEN, BLUE dots which are arranged in vertical stripe and this module can display16.2M(6bits+FRC) colors and color gamut sRGB 100%. The TFT-LCD panel used for this module is a low reflection and higher color type. Therefore, this module is suitable for Notebook PC. The LED driver for back-light driving is built in this model.

All input signals are eDP1.2 interface compatible.

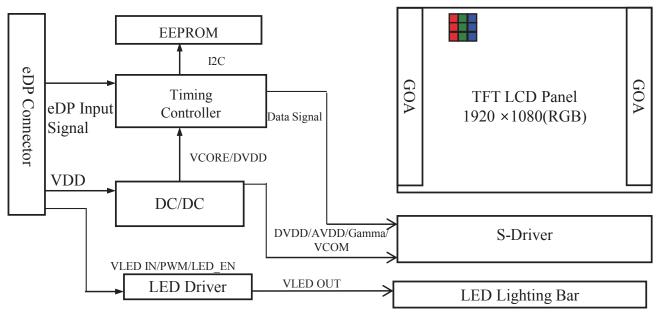



Figure 1. Drive Architecture

#### **1.2 Features**

- 2 lane eDP interface with 2.7Gbps link rates
- Thin and light weight
- 16.2M(6bits+FRC) color depth, color gamut sRGB 100%
- Single LED lighting bar (Bottom side/Horizontal Direction)
- Data enable signal mode
- Side mounting frame
- Green product (RoHS & Halogen free product)
- On board LED driving circuit
- Low driving voltage and low power consumption
- On board EDID chip
- DPCD Version 1.1
- Adjust backlight brightness with DC mode
- Function : BIST/FRC/ Free Sync



#### **1.3 Application**

• Notebook PC (Wide type)

#### **1.4 General Specification**

The followings are general specifications at the model AM-19201080-156E. (listed in Table 1)

| Parameter            | Specification                                                                                  |        | Remarks |
|----------------------|------------------------------------------------------------------------------------------------|--------|---------|
| Active area          | 344.16(H) ×193.59(V)                                                                           | mm     |         |
| Number of pixels     | 1920 (H) ×1080 (V)                                                                             | pixels |         |
| Pixel pitch          | 179.25(H) ×179.25(V)                                                                           | um     |         |
| Pixel arrangement    | RGB Vertical stripe                                                                            |        |         |
| Display colors       | 16.2M(6bits+FRC)                                                                               |        |         |
| Color gamut          | sRGB 100%                                                                                      |        |         |
| Display mode         | Normally Black                                                                                 |        |         |
| Dimensional outline  | 350.6±0.3 (H)*205.17±0.3(V)(W/O PCB)*3.0 (Max)<br>350.6±0.3(H)*214.75±0.5(V) (W/PCB)*3.0 (Max) | mm     |         |
| Weight               | 280(max)                                                                                       | g      |         |
| Surface treatment    | AG                                                                                             |        |         |
| Surface hardness     | 3Н                                                                                             |        |         |
| Back-light           | Bottom edge side, 1-LED lighting bar type                                                      |        | Note 1  |
|                      | $P_{\rm D}$ : 0.75(Max.)                                                                       | W      | @Mosaic |
| Power<br>consumption | P <sub>BL</sub> : 3.3(Max.)                                                                    | W      |         |
|                      | P <sub>Total</sub> : 4.05(Max.)                                                                | W      | @Mosaic |

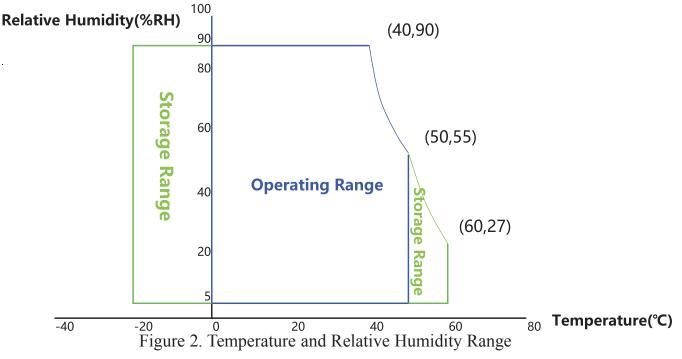
<Table 1. General Specifications>

Notes : 1. LED Lighting Bar (50\*LED Array)

#### 2.0 ABSOLUTE MAXIMUM RATINGS

The followings are maximum values which, if exceed, may cause faulty operation or damage to the unit. The operational and non-operational maximum voltage and current values are listed in Table 2.

|                       | 1gs             | Ta=25+/-2°C          |                      |      |         |
|-----------------------|-----------------|----------------------|----------------------|------|---------|
| Parameter             | Symbol          | Min.                 | Max.                 | Unit | Remarks |
| Power Supply Voltage  | V <sub>DD</sub> | -0.3                 | 4.0                  | V    |         |
| eDP input Voltage     | VeDP            | 0                    | 2.0                  | V    | Note 1  |
| Logic Supply Voltage  | V <sub>IN</sub> | V <sub>SS</sub> -0.3 | V <sub>DD</sub> +0.3 | V    |         |
| Operating Temperature | T <sub>OP</sub> | 0                    | +50                  | °C   | Note 2  |
| Storage Temperature   | T <sub>ST</sub> | -20                  | +60                  | °C   | Note 2  |


| < Table 2. | Absolute | Maximum | Ratings> |
|------------|----------|---------|----------|
|------------|----------|---------|----------|

Notes :

1. Permanent damage to the device may occur if maximum values are exceeded functional operation should be restricted to the condition described under normal operating conditions.

2. Temperature and relative humidity range are shown in the figure below.

90 % RH Max. ( 40 °C  $\ge$  Ta) Maximum wet - bulb temperature at 39 °C or less. (Ta > 40 °C ) No condensation.





#### **3.0 ELECTRICAL SPECIFICATIONS**

#### **3.1 Electrical Specifications**

|                                   |                    | < Table 3.         | 3. Electrical Specifications > |      |             |         | Ta=25+/-2°C |  |
|-----------------------------------|--------------------|--------------------|--------------------------------|------|-------------|---------|-------------|--|
| Param                             |                    | Min.               | Тур.                           | Max. | Unit        | Remarks |             |  |
| Power Supply Voltage              |                    | V <sub>DD</sub>    | 3.0                            | 3.3  | 3.6         | V       | Note 1      |  |
| Permissible Input Ripp<br>Voltage | le                 | V <sub>RF</sub>    | -10%<br>VDD                    | -    | +10%<br>VDD | V       | Note 4      |  |
| DIST Control Loval                |                    | High<br>Level      | 2                              | -    | 3.3         | V       | @VDDI0=2.5  |  |
| BIST Control Level                | BIST Control Level |                    | 0                              | -    | 0.25        | V       | V           |  |
| Power Supply Inrush C             | urrent             | Inrush             | -                              | -    | 2           | A       | Note3       |  |
| Power Supply                      | Mosaic             | T                  | -                              | -    | 227         | mA      |             |  |
| Current                           | RGB                | I <sub>DD</sub>    | -                              | -    | 333         | mA      | Note 1      |  |
|                                   | Mosaic             |                    | -                              | -    | 0.75        | W       |             |  |
| Power Consumption                 | RGB                | P <sub>RGB</sub>   | -                              | -    | 1.1         | W       |             |  |
|                                   | BLU                | $P_{BL}$           | -                              | -    | 3.3         | W       | Note 2      |  |
|                                   | Total              | P <sub>Total</sub> | -                              | -    | 4.05        | W       | @Mosaic     |  |



#### **3.0 ELECTRICAL SPECIFICATIONS**

#### **3.1 Electrical Specifications**

Notes :

- 1. The supply voltage is measured and specified at the interface connector of LCM.
  - The current draw and power consumption specified is for 3.3V at 25 °C.
    - a) Mosaic pattern 8\*8
    - b) R/G/B patterns

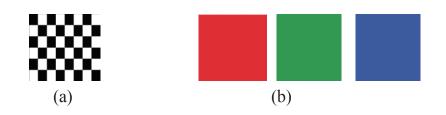



Figure 3. Power Measure Patterns

- 2. Calculated value for reference (VLED × ILED)
- 3. Measure condition (Figure 4)

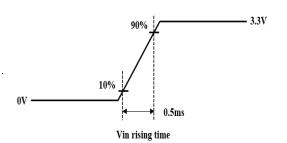



Figure 4. Inrush Measure Condition

4. Input voltage range:3.0~3.6V.Test condition: Oscilloscope bandwidth 20MHz, AC coupling

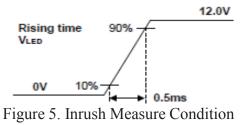


Version: A

2023-10-31

#### 3.2 Backlight Unit

|                                 | < Table 4.                                    | . LED Driving Guideline Specifications > |        |      |       | Ta=25+/-2°C |                               |
|---------------------------------|-----------------------------------------------|------------------------------------------|--------|------|-------|-------------|-------------------------------|
|                                 | Parameter                                     |                                          | Min.   | Тур. | Max.  | Unit        | Remarks                       |
| LED Forward V                   | oltage                                        | V <sub>F</sub>                           | -      | -    | 2.9   | V           |                               |
| LED Forward C                   | urrent                                        | I <sub>F</sub>                           | -      | 19.6 | -     | mA          |                               |
| LED Power Inpu                  | ıt Voltage                                    | VLED                                     | 5      | 12   | 21    | V           |                               |
| LED Power Inpu                  | ıt Current                                    | I <sub>LED</sub>                         | -      | -    | Max.  | mA          | Neta 1                        |
| LED Power Con                   | sumption                                      | P <sub>LED</sub>                         | -      | -    | 3.3   | W           | Note 1                        |
| Power Supply V<br>Driver Inrush | Power Supply Voltage for LED<br>Driver Inrush |                                          | -      | -    | 2     | А           | Note 3                        |
| LED Life-Time                   |                                               | N/A                                      | 15,000 | -    | -     | Hour        | $I_F = 19.6 \text{mA}$ Note 2 |
| EN Control                      | Backlight On                                  | N/                                       | 2.2    | -    | 3.6   | V           |                               |
| Level                           | Backlight Off                                 | VBL_EN                                   | 0      | -    | 0.5   | V           |                               |
| PWM Control                     | High Level                                    | N.Z.                                     | 2.2    | -    | 3.6   | V           |                               |
| Level Low Level                 |                                               | $V_{\text{BL}_{PWM}}$                    | 0      | -    | 0.5   | V           |                               |
| PWM Control Frequency           |                                               | F <sub>PWM</sub>                         | 200    | -    | 2,000 | Hz          |                               |
| Duty Ratio                      |                                               |                                          | 1      | -    | 100   | %           |                               |


Notes :

1. Power supply voltage12V for LED driver.

Calculator value for reference IF  $\times$  VF  $\times$  50 /driver efficiency = PLED

2. The LED life-time define as the estimated time to 50% degradation of initial luminous.

3. Measure condition (Figure 5)





#### 3.3 LED Structure

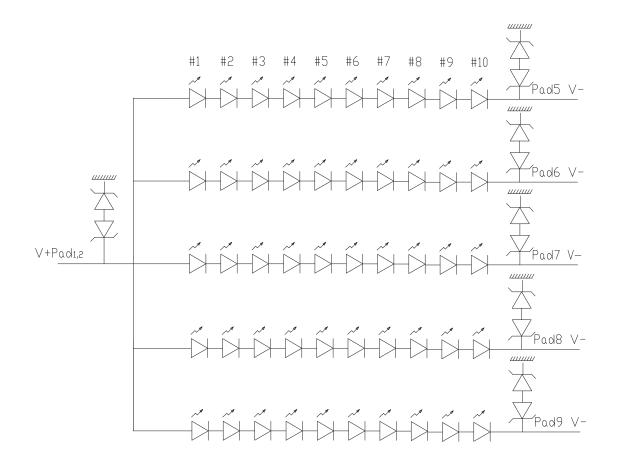



Figure 6. LED Structure



#### 4.0 OPTICAL SPECIFICATION

#### 4.1 Overview

The test of optical specifications shall be measured in a dark room (ambient luminance  $\leq 1$  lux and temperature =  $25\pm2^{\circ}$ C) with the equipment of luminance meter system (PR730&PR810) and test unit shall be located at an approximate distance 50cm from the LCD surface at a viewing angle of  $\theta$  and  $\Phi$  equal to 0°. We refer to  $\theta \emptyset = 0$  (= $\theta 3$ ) as the 3 o'clock direction (the "right"),  $\theta \emptyset = 90$  (= $\theta 12$ ) as the 12 o'clock direction ("upward"),  $\theta \emptyset = 180$  (=  $\theta 9$ ) as the 9 o'clock direction ("left") and  $\theta \emptyset = 270$ (=  $\theta 6$ ) as the 6 o'clock direction ("bottom"). While scanning  $\theta$ and/or  $\emptyset$ , the center of the measuring spot on the display surface shall stay fixed. The backlight should be operating for 30 minutes prior to measurement. VDD shall be 3.3+/- 0.3V at 25°C. Optimum viewing angle direction is 6 'clock.

#### 4.2 Optical Specifications

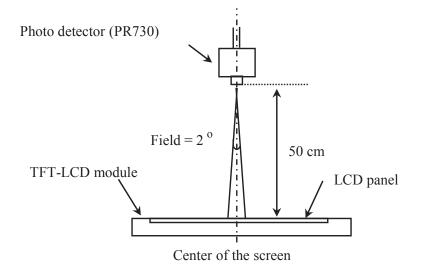
| Parame                              | eter         | Symbol                    | Condition                     | Min.    | Тур.  | Max.      | Unit              | Remark |
|-------------------------------------|--------------|---------------------------|-------------------------------|---------|-------|-----------|-------------------|--------|
|                                     | TT           | θ3                        |                               | -       | 85    | -         | Deg.              |        |
| Viewing Angle                       | Horizontal   | θ,                        | CR > 10                       | -       | 85    | -         | Deg.              | Note 1 |
| Range                               | Vertical     | $\Theta_{12}$             | $CK \ge 10$                   | -       | 85    | -         | Deg.              |        |
|                                     | ventical     | $\Theta_{\!\!6}$          |                               | -       | 85    | -         | Deg.              |        |
| Luminance Cor                       | ntrast Ratio | CR                        | $\Theta = \Theta$             | -       | 1200  | -         |                   | Note 2 |
| Luminance of<br>White               | 5 Points     | $\mathbf{Y}_{\mathrm{w}}$ | $\Theta = \Theta$             | 190     | 220   |           | cd/m <sup>2</sup> | Note 3 |
| White                               | 5 Points     | $\Delta$ Y5               | ILED                          | 80      | -     | -         | %                 |        |
| Luminance<br>Uniformity             | 13 Points    | $\Delta$ Y13              |                               | 60      | -     | -         | %                 | Note 4 |
| White Chron                         | maticity     | W <sub>x</sub>            | $\Theta = \Omega$             | 0.283   | 0.313 | 0.343     |                   | Note 5 |
| White Chron                         | nationy      | $W_v$                     | $\Theta = 0$                  | 0.299   | 0.329 | 0.359     |                   | Note 5 |
|                                     | Red          | R <sub>x</sub>            |                               |         | 0.646 |           |                   |        |
|                                     | Red          | R <sub>v</sub>            |                               |         | 0.334 |           |                   |        |
| Reproduction                        | Green        | G <sub>x</sub>            |                               | Typ0.03 | 0.303 | Тур.+0.03 |                   |        |
| of Color                            | Ofeen        | G <sub>v</sub>            | $\Theta = \Omega$             |         | 0.611 |           |                   |        |
|                                     | DI           | B <sub>x</sub>            |                               |         | 0.152 |           |                   |        |
|                                     | Blue         |                           |                               |         | 0.064 | 1         |                   |        |
| Color Gamut(sRGB<br>Match@1931)     |              |                           |                               | 95      | 100   | -         | %                 |        |
| Response Time<br>(Rising + Falling) |              | T <sub>RT</sub>           | $Ta=25^{\circ}C$ $\Theta = 0$ | -       | 20    | 25        | ms                | Note 6 |
| Cross T                             | alk          | СТ                        | $\Theta = \Theta$             | -       | -     | 2.0       | %                 | Note 7 |

<Table 5. Optical Specifications>

YU DU AMSON ELECTRONICS CO., LTD.



Notes :


- 1. Viewing angle is the angle at which the contrast ratio is greater than 10. The viewing angles are determined for the horizontal or 3, 9 o'clock direction and the vertical or 6, 12 o'clock direction with respect to the optical axis which is normal to the LCD surface (see Figure 7).
- 2. Contrast measurements shall be made at viewing angle of  $\Theta$ = 0 and at the center of the LCD surface. Luminance shall be measured with all pixels in the view field set first to white, then to the dark (black) state . (see Figure 7) Luminance Contrast Ratio (CR) is defined mathematically.

CR = Luminance when displaying a white raster Luminance when displaying a black raster

- 3. Center Luminance of white is defined as luminance values of 5 point average across the LCD surface. Luminance shall be measured with all pixels in the view field set first to white. This measurement shall be taken at the locations shown in Figure 8 for a total of the measurements per display.
- 4. The White luminance uniformity on LCD surface is then expressed as :  $\Delta Y =$  Minimum Luminance of 5(or 13) points / Maximum Luminance of 5(or 13) points.(see Figure 8 and Figure 9).
- 5. The color chromaticity coordinates specified in Table 5 shall be calculated from the spectral data measured with all pixels first in red, green, blue and white. Measurements shall be made at the center of the panel.
- 6. The electro-optical response time measurements shall be made as Figure 10 by switching the "data" input signal ON and OFF. The times needed for the luminance to change from 10% to 90% is T<sub>f</sub>, and 90% to 10% is T<sub>r</sub>.
- 7. Cross-Talk of one area of the LCD surface by another shall be measured by comparing the luminance (YA) of a 25mm diameter area, with all display pixels set to a gray level, to the luminance (YB) of that same area when any adjacent area is driven dark. (See Figure 11).



#### 4.3 Optical Measurements



Optical characteristics measurement setup

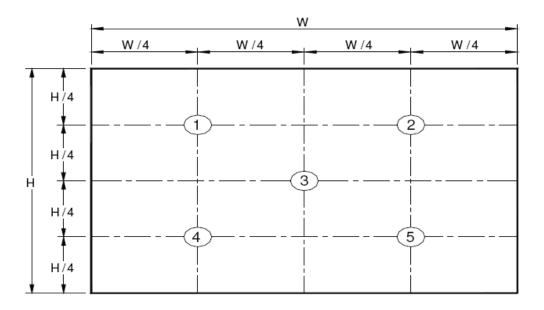



Figure 8. White Luminance and Uniformity Measurement Locations (5 points)

Center Luminance of white is defined as luminance values of center 5 points across the LCD surface. Luminance shall be measured with all pixels in the view field set first to white. This measurement shall be taken at the locations shown in Figure 7 for a total of the measurements per display.



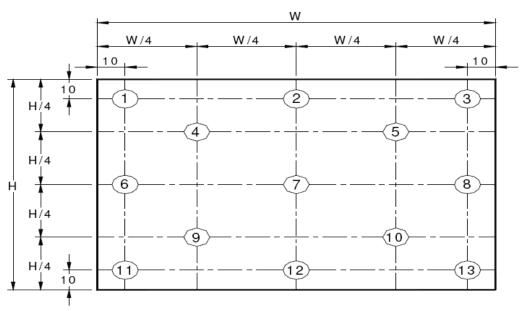



Figure 9. Uniformity Measurement Locations (13 points)

The White luminance uniformity on LCD surface is then expressed as :  $\Delta Y5 =$  Minimum Luminance of five points / Maximum Luminance of five points (see Figure 8),  $\Delta Y13 =$  Minimum Luminance of 13 points /Maximum Luminance of 13 points (see Figure 9).

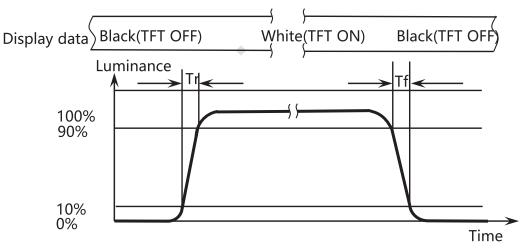
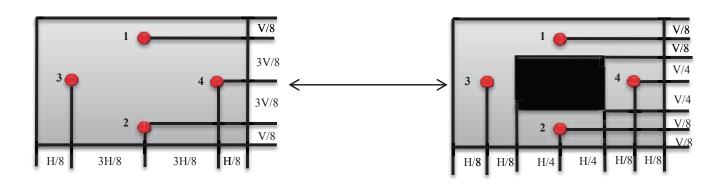




Figure 10. Response Time Testing

The electro-optical response time measurements shall be made as shown in Figure 10 by switching the "data" input signal ON and OFF. Tr: The luminance to change from 10% to 90%, Tf: The luminance to change from 90% to 10%.





Cross Talk (%) = 
$$\left| \frac{Y_B - Y_A}{Y_A} \right| \times 100$$

Figure 11. Cross Talk Modulation Test Description

Where:

 $Y_A =$  Initial luminance of measured area (cd/m<sup>2</sup>)

 $Y_B$  = Subsequent luminance of measured area (cd/m<sup>2</sup>)

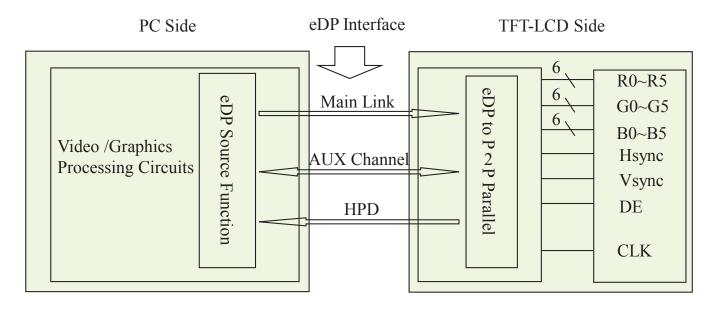
The location 1/2/3/4 measured will be exactly the same in both patterns. The test background gray is from L64 to L192. Take the largest data as the result.

Cross Talk of one area of the LCD surface by another shall be measured by comparing the luminance (YA) of a 25mm diameter area, with all display pixels set to a gray level, to the luminance (YB) of that same area when any adjacent area is driven dark.(Refer to Figure 11) The test system: PR730



#### **5.0 INTERFACE CONNECTION**

#### 5.1 Electrical Interface Connection


The electronics interface connector is STM MSAK24025P30. The connector interface pin assignments are listed in Table 6.

<Table 6. Pin Assignments for the Interface Connector>

| Terminal | Symbol    | Functions                   |  |  |
|----------|-----------|-----------------------------|--|--|
| Pin No.  | Symbol    | Description                 |  |  |
| 1        | NC        | No Connection               |  |  |
| 2        | H_GND     | Ground                      |  |  |
| 3        | LANE1_N   | eDP RX Channel 1 Negative   |  |  |
| 4        | LANE1_P   | eDP RX Channel 1 Positive   |  |  |
| 5        | H_GND     | Ground                      |  |  |
| 6        | LANE0_N   | eDP RX Channel 0 Negative   |  |  |
| 7        | LANE0_P   | eDP RX Channel 0 Positive   |  |  |
| 8        | H_GND     | Ground                      |  |  |
| 9        | AUX_CH_P  | eDP AUX CH Positive         |  |  |
| 10       | AUX_CH_N  | eDP AUX CH Negative         |  |  |
| 11       | H_GND     | Ground                      |  |  |
| 12       | LCD_VCC   | Power Supply, 3.3V (typ.)   |  |  |
| 13       | LCD_VCC   | Power Supply, 3.3V (typ.)   |  |  |
| 14       | BIST      | Panel Self Test Enable      |  |  |
| 15       | H_GND     | Ground                      |  |  |
| 16       | H_GND     | Ground                      |  |  |
| 17       | HPD       | Hot Plug Detect Output      |  |  |
| 18       | BL_GND    | LED Ground                  |  |  |
| 19       | BL_GND    | LED Ground                  |  |  |
| 20       | BL_GND    | LED Ground                  |  |  |
| 21       | BL_GND    | LED Ground                  |  |  |
| 22       | BL_ENABLE | LED Enable Pin(+3.3V Input) |  |  |
| 23       | BL_PWM    | System PWM Signal Input     |  |  |
| 24       | NC        | No Connection               |  |  |
| 25       | NC        | No Connection               |  |  |
| 26       | BL_POWER  | LED Power Supply 5V-21V     |  |  |
| 27       | BL_POWER  | LED Power Supply 5V-21V     |  |  |
| 28       | BL_POWER  | LED Power Supply 5V-21V     |  |  |
| 29       | BL_POWER  | LED Power Supply 5V-21V     |  |  |
| 30       | NC        | No Connection               |  |  |



#### 5.2 eDP Interface



Note:

Transmitter : Parade DP501 or equivalent. Transmitter is not contained in module.



#### 5.3 Data Input Format

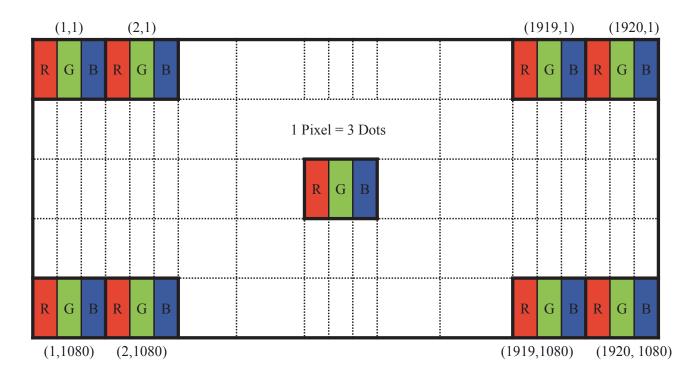



Figure 13. Display Position of Input Data (V-H)



#### 5.4 Back-light & LCM Interface Connection

BLU Interface Connector: STM MSK24037P9 or Compatible.

| Pin No. | Symbol | Description            | Pin No. | Symbol | Description          |
|---------|--------|------------------------|---------|--------|----------------------|
| 1       | LED    | LED cathode connection | 6       | NC     | No Connection        |
| 2       | LED    | LED cathode connection | 7       | NC     | No Connection        |
| 3       | LED    | LED cathode connection | 8       | Vout   | LED anode connection |
| 4       | LED    | LED cathode connection | 9       | Vout   | LED anode connection |
| 5       | LED    | LED cathode connection |         |        |                      |

<Table 7. Pin Assignments for the BLU Connector>



#### 6.0 SIGNAL TIMING SPECIFICATION

#### 6.1 The AM-19201080-156E Is Operated By The DE Only

| Item                      |            | Symbols | Min   | Тур   | Max   | Unit   |
|---------------------------|------------|---------|-------|-------|-------|--------|
| Clock                     | Frequency  | 1/Tc    | 151.6 | 152.6 | 153.5 | MHz    |
|                           |            |         | 1157  | 1160  | 1163  | lines  |
| Fr                        | ame Period | Tv      | -     | 60    | -     | Hz     |
|                           |            |         | -     | 16.67 | -     | ms     |
| Vertical Display Period   |            | Tvd     | -     | 1080  | -     | lines  |
| One line Scanning Period  |            | Th      | 2184  | 2192  | 2200  | clocks |
| Horizontal Display Period |            | Thd     | -     | 1920  | -     | clocks |

< Table 8. Signal Timing Specification >

Note : The above is as optimized setting.



#### 6.2 eDP Rx Interface Timing Parameter

The specification of the eDP Rx interface timing parameter is shown in Table 9.

#### Symbol Item Min Тур Max Unit Remark Spread spectrum clock 0 0.5 % ssc \_ (Link clock down-spreading) Differential peak-to-peak input voltage at 100 1320 mV VRX-DIFFp-p package pins Rx input DC common mode VRX DC CM 0 2 V voltage Differential termination **RRX-DIFF** 80 120 Ω \_ resistance Single-ended termination **RRX-SE** 40 60 Ω \_ resistance Rx short circuit current limit IRX SHORT 50 mA Intra-pair skew at Rx package pins (HBR) LRX SKEW RX intra-pair skew tolerance at 60 ps INTRA PAIR HBR AC Coupling Capacitor CSOURCE ML 75 200 nF Source side

#### <Table 9. eDP Main-Link RX TP4 Package Pin Parameters>

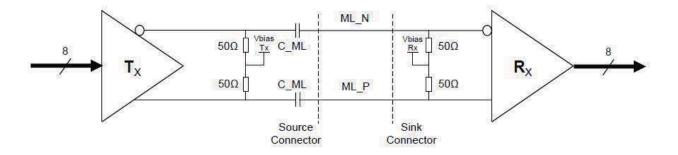
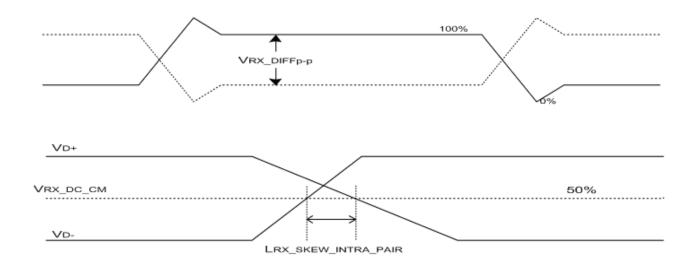
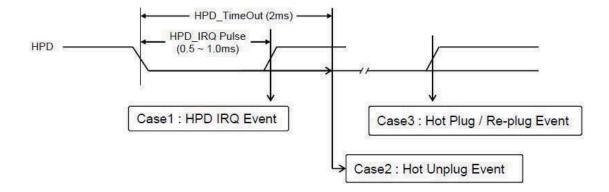
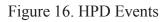



Figure 14. Main link differential pair





Figure 15. VRX-DIFFp-p & LRX\_SKEW\_INTRA\_PAIR



| <table 10.="" hpd<="" th=""><th>Characteristics&gt;</th></table> | Characteristics> |
|------------------------------------------------------------------|------------------|
|------------------------------------------------------------------|------------------|

| Item                           | Symbol  | Min  | Тур | Max  | Unit | Remark                |
|--------------------------------|---------|------|-----|------|------|-----------------------|
| HPD voltage                    | Vhpd    | 2.25 | -   | 3.6  | V    |                       |
| Hot Plug Detection Threshold   | -       | 2.0  | -   | -    | V    | Source side Datasting |
| Hot Unplug Detection Threshold | -       | -    | -   | 0.8V | V    | Source side Detecting |
| HPD_IRQ Pulse Width            | HPD_IRQ | 0.5  | -   | 1    | ms   |                       |
| HPD_TimeOut                    | -       | 2.0  | -   | -    | ms   |                       |







| <table 11.="" aux<="" th=""><th>Characteristics&gt;</th></table> | Characteristics> |
|------------------------------------------------------------------|------------------|
|------------------------------------------------------------------|------------------|

| Item                                           | Symbol              | Min  | Тур | Max  | Unit | Remark      |
|------------------------------------------------|---------------------|------|-----|------|------|-------------|
| AUX unit interval                              | UIAUX               | 0.4  | 0.5 | 0.6  | Us   |             |
| AUX peak-to-peak<br>input differential voltage | VAUX-RX-D<br>IFFp-p | 0.29 | -   | 1.38 | V    |             |
| AUX CH termination DC resistance               | RAUX-TER<br>M       | 80   | 100 | 120  | Ohm  |             |
| AUX DC common mode voltage                     | VAUX-DC-C<br>M      | 0    | -   | 2    | V    |             |
| AUX turn around common mode voltage            | VAUX-TUR<br>N-CM    | -    | -   | 0.3  | V    |             |
| AUX short circuit current limit                | IAUX-SHOR<br>T      | -    | -   | 90   | mA   |             |
| AUX AC Coupling Capacitor                      | CSOURCE-A<br>UX     | 75   | -   | 200  | nf   | Source side |

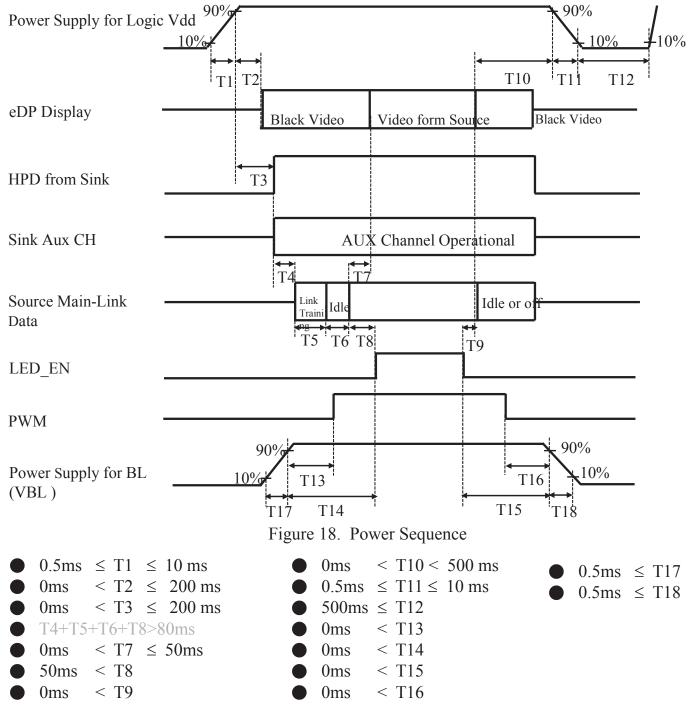


Figure 17. AUX differential pair



#### 7.0 INPUT SIGNALS, BASIC DISPLAY COLORS & GRAY SCALE OF COLORS

|                        | Colors &   |                         | Data signal             |                         |
|------------------------|------------|-------------------------|-------------------------|-------------------------|
|                        | Gray scale | R0 R1 R2 R3 R4 R5 R6 R7 | G0 G1 G2 G3 G4 G5 G6 G7 | B0 B1 B2 B3 B4 B5 B6 B7 |
|                        | Black      | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0         |
|                        | Blue       | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0         | 1 1 1 1 1 1 1 1         |
|                        | Green      | 0 0 0 0 0 0 0 0         | 1 1 1 1 1 1 1 1         | 0 0 0 0 0 0 0 0         |
| Basic                  | Light Blue | 0 0 0 0 0 0 0 0         | 1 1 1 1 1 1 1 1         | 1 1 1 1 1 1 1 1         |
| colors                 | Red        | 1 1 1 1 1 1 1 1         | 0 0 0 0 0 0 0           | 0 0 0 0 0 0 0 0         |
|                        | Purple     | 1 1 1 1 1 1 1 1         | 0 0 0 0 0 0 0           | 1 1 1 1 1 1 1 1         |
|                        | Yellow     | 1 1 1 1 1 1 1 1         | 1 1 1 1 1 1 1 1         | 0 0 0 0 0 0 0 0         |
|                        | White      | 1 1 1 1 1 1 1 1         | 1 1 1 1 1 1 1 1         | 1 1 1 1 1 1 1 1         |
|                        | Black      | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0           | 0 0 0 0 0 0 0 0         |
|                        | Δ          | 1 0 0 0 0 0 0           | 0 0 0 0 0 0 0           | 0 0 0 0 0 0 0 0         |
|                        | Darker     | 0 1 0 0 0 0 0           | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0         |
| Gray scale             |            | <u> </u>                | <u> </u>                | <u> </u>                |
| of Red                 |            | ↓                       | ↓                       | ↓                       |
|                        | Brighter   | 1 0 1 1 1 1 1 1         | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0         |
|                        | ▽          | 0 1 1 1 1 1 1 1         | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0         |
|                        | Red        | 1 1 1 1 1 1 1 1         | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0         |
|                        | Black      | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0         |
|                        | ۵<br>۲     | 0 0 0 0 0 0 0 0         | 1 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0         |
|                        | Darker     | 0 0 0 0 0 0 0 0         | 0 1 0 0 0 0 0           | 0 0 0 0 0 0 0 0         |
| Gray scale<br>of Green |            |                         |                         |                         |
| of Green               | Brighter   | 0 0 0 0 0 0 0           | 1011111                 | 0 0 0 0 0 0 0 0         |
|                        | blighter   | 0 0 0 0 0 0 0 0         |                         | 0 0 0 0 0 0 0 0 0       |
|                        | Green      | 0 0 0 0 0 0 0 0         |                         | 0 0 0 0 0 0 0 0         |
| · ·                    | Black      |                         |                         |                         |
|                        | Δ          |                         |                         |                         |
|                        | Darker     | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0         | 0 1 0 0 0 0 0 0         |
| Gray scale             |            | ↑                       | ↑                       | ↑                       |
| of Blue                | ▽          | Ļ                       | Ļ                       | ↓<br>↓                  |
|                        | Brighter   | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0         | 1 0 1 1 1 1 1 1         |
|                        | V          | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0         | 0 1 1 1 1 1 1 1         |
|                        | Blue       | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0         | 1 1 1 1 1 1 1 1         |
| Crow                   | Black      | 0 0 0 0 0 0 0           | 0 0 0 0 0 0 0 0         | 0 0 0 0 0 0 0 0         |
|                        | Δ          | 1 0 0 0 0 0 0           | 1 0 0 0 0 0 0 0         | 1 0 0 0 0 0 0           |
| Gray<br>scale          | Darker     | 0 1 0 0 0 0 0           | 0 1 0 0 0 0 0 0         | 0 1 0 0 0 0 0           |
| of                     | Δ          | <u> </u>                | <u></u>                 | <u></u>                 |
| White&                 | $\nabla$   | ↓                       | ↓                       | ↓                       |
| Black                  | Brighter   | 1 0 1 1 1 1 1 1         | 1 0 1 1 1 1 1 1         | 10111111                |
|                        | ▽          | 0 1 1 1 1 1 1 1         | 0 1 1 1 1 1 1 1         | 0 1 1 1 1 1 1 1         |
|                        | White      | 1 1 1 1 1 1 1 1         | 1 1 1 1 1 1 1 1         | 1 1 1 1 1 1 1 1         |


<Table 12. Input Signal & Basic Display Colors & Gray Scale of Colors >

YU DU AMSON ELECTRONICS CO., LTD.



#### 8.0 POWER SEQUENCE

To prevent a latch-up or DC operation of the LCD module, the power on/off sequence shall be as shown in below.



#### Notes:

1. When the power supply VDD is 0V, keep the level of input signals on the low or keep high impedance. 2. Do not keep the interface signal high impedance when power is on. Back Light must be turn on after power for logic and interface signal are valid.



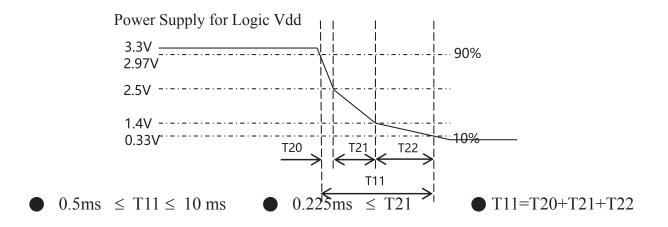



Figure 19. T11 timing requirements

AM-19201080-156E

2023-10-31

#### 9.0 Connector Description

Physical interface is described as for the connector on LCM. These connectors are capable of accommodating the following signals and will be following components.

#### 9.1 TFT LCD Module

| < Table 13. | Signal | Connector | > |
|-------------|--------|-----------|---|
|-------------|--------|-----------|---|

| <b>Connector Name /Description</b> | For Signal Connector |
|------------------------------------|----------------------|
| Manufacturer                       | STM                  |
| Type/ Part Number                  | MSAK24025P30         |
| Mating Housing/ Part Number        | I-PEX 20454-030T     |



#### **10.0 MECHANICAL CHARACTERISTICS**

#### **10.1 Dimensional Requirements**

Figure 23 shows mechanical outlines for the model AM-19201080-156E. Other parameters are shown in Table 14.

| Parameter           | Specification                                                                                    | Unit   |
|---------------------|--------------------------------------------------------------------------------------------------|--------|
| Active Area         | Active Area 344.16 (H) ×193.59 (V)                                                               |        |
| Number of pixels    | 1920 (H) X 1080 (V) (1 pixel = $R + G + B$ dots)                                                 | pixels |
| Pixel pitch         | 179.25 (H) X 179.25 (V)                                                                          | um     |
| Pixel arrangement   | RGB Vertical stripe                                                                              |        |
| Display colors      | 16.2M(6bit+FRC)                                                                                  |        |
| Display mode        | Normally Black                                                                                   |        |
| Dimensional outline | 350.66±0.3 (H)*205.25±0.3(V)(W/O PCB)*2.6 (Max)<br>350.66±0.3(H)*214.75±0.5(V) (W/PCB)*2.6 (Max) | mm     |
| Weight 280(max)     |                                                                                                  | g      |

#### **10.2 Mounting**

See Figure 24.

#### 10.3 Anti-Glare and Polarizer Hardness.

The surface of the LCD has an Anti-Glare coating to minimize reflection and a coating to reduce scratching.

#### 10.4 Light Leakage

There shall not be visible light from the back-lighting system around the edges of the screen as seen from a distance 50cm from the screen with an overhead light level of 350lux.



#### **11.0 RELIABILITY TEST**

The reliability test items and its conditions are shown in below. <Table 15. Reliability Test>

| No | Test Items                                            | Conditions                                                                                                                                                      | Remark |
|----|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 1  | High temperature storage test                         | $Ta = 60^{\circ}C$ , 60%RH, 240 hrs                                                                                                                             |        |
| 2  | Low temperature storage test                          | $Ta = -20^{\circ}C$ , 240 hrs                                                                                                                                   |        |
| 3  | High temperature & high<br>humidity<br>operation test | Ta = 50°C, 80%RH, 240 hrs                                                                                                                                       |        |
| 4  | High temperature operation test                       | Ta = 50°C , 60%RH, 240 hrs                                                                                                                                      |        |
| 5  | Low temperature operation test                        | $Ta = 0^{\circ}C$ , 240 hrs                                                                                                                                     |        |
| 6  | Thermal shock                                         | Ta = $-20 \degree C \leftrightarrow 60 \degree C (0.5 hr), 60\% \pm 3\% RH,$<br>100 cycle                                                                       |        |
| 7  | Vibration test<br>(non-operating)                     | Ta = 25°C, 60%RH, 1.5G, 10~500Hz,<br>Sine X,Y,Z / Sweep rate : 1 hour                                                                                           | Note 1 |
| 8  | Shock test<br>(non-operating)                         | Ta = 25°C, 60%RH, 220G, Half Sine Wave<br>2msec $\pm X, \pm Y, \pm Z$ Once for each direction                                                                   | Note 1 |
| 9  | Electro-static discharge test<br>(operating)          | Air : $150 \text{ pF}$ , $330\Omega$ , $\pm 15 \text{ KV}$<br>Contact : $150 \text{ pF}$ , $330\Omega$ , $\pm 8 \text{ KV}$<br>Ta = $25^{\circ}$ C , $60\%$ RH, | Note 2 |

Notes :

1. The fixture must be hard enough, so that the module would not be twisted or bent.

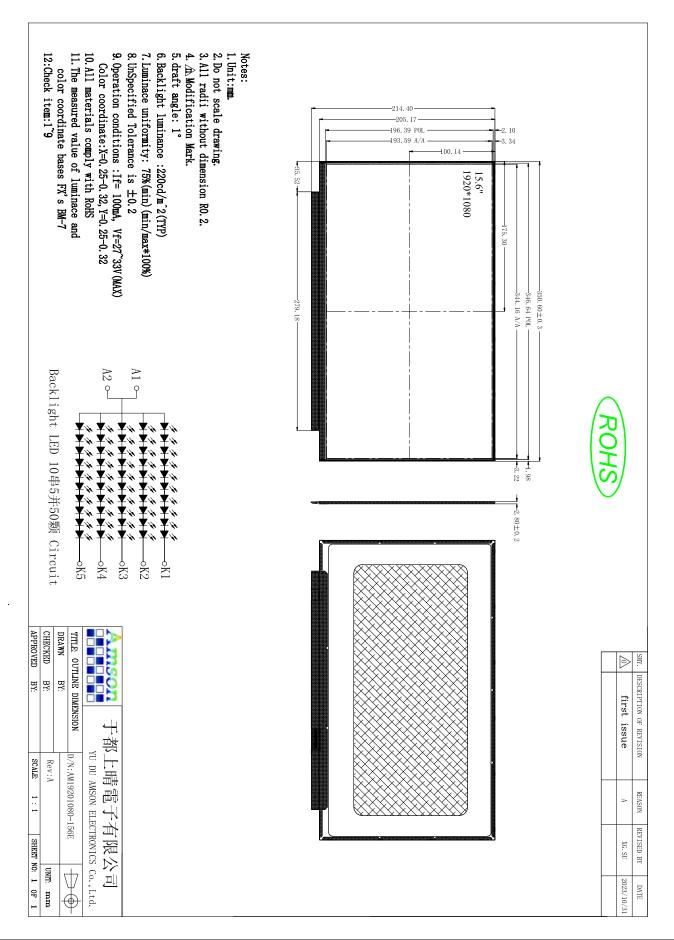
2. Self- recovery and restart recovery is allowed. No hardware failures.



#### **12.0 HANDLING & CAUTIONS**

- (1) Cautions when taking out the module
  - Pick the pouch only, when taking out module from a shipping package.
- (2) Cautions for handling the module
  - As the electrostatic discharges may break the LCD module, handle the LCD module with care. Peel a protection sheet off from the LCD panel surface as slowly as possible.
  - As the LCD panel and back light element are made from fragile glass material, impulse and pressure to the LCD module should be avoided.
  - As the surface of the polarizer is very soft and easily scratched, use a soft dry cloth without chemicals for cleaning.
  - Do not pull the interface connector in or out while the LCD module is operating.
  - Put the module display side down on a flat horizontal plane.
  - Handle connectors and cables with care.
- (3) Cautions for the operation
  - When the module is operating, do not lose CLK, ENAB signals. If any one of these signals is lost, the LCD panel would be damaged.
  - Obey the supply voltage sequence. If wrong sequence is applied, the module would be damaged.
- (4) Cautions for the atmosphere
  - Dew drop atmosphere should be avoided.
  - Do not store and/or operate the LCD module in a high temperature and/or humidity atmosphere. Storage in an electro-conductive polymer packing pouch and under relatively low temperature atmosphere is recommended.
- (5) Cautions for the module characteristics
  - Do not apply fixed pattern data signal to the LCD module at product aging.
  - Applying fixed pattern for a long time may cause image sticking.
- (6) Other cautions
  - Do not disassemble and/or re-assemble LCD module.
  - Do not re-adjust variable resistor or switch etc.
  - When returning the module for repair or etc. Please pack the module not to be broken. We recommend to use the original shipping packages.




### AM-19201080-156E

Version: A

2023-10-31

| □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ |
|---------------------------------------|
| 司定                                    |
| 步骤3: 装好箱后用胶纸封好箱<br>一箱装30PCS           |
|                                       |
|                                       |
|                                       |
| $\checkmark$                          |
|                                       |
|                                       |
|                                       |
| 步骤2:两片屏面对面合在一起装入PE袋再放入箱内卡槽            |
|                                       |

YU DU AMSON ELECTRONICS CO., LTD.



YU DU AMSON ELECTRONICS CO., LTD.



#### 16.0 EDID Table

| Ch  | eck | Address | Function               | Have | Dec                       |       | Transformed | Nata                         |
|-----|-----|---------|------------------------|------|---------------------------|-------|-------------|------------------------------|
| FAE | QE  | (HEX)   | Function               | Hex  | Hex Dec crc Input values. | Notes |             |                              |
| -   | -   | 00      |                        | 00   | 0                         |       | 0           |                              |
| -   | -   | 01      |                        | FF   | 255                       |       | 255         |                              |
| -   | -   | 02      |                        | FF   | 255                       |       | 255         |                              |
| -   | -   | 03      | llaadau                | FF   | 255                       |       | 255         |                              |
| -   | -   | 04      | Header                 | FF   | 255                       |       | 255         | EDID Header                  |
| -   | -   | 05      |                        | FF   | 255                       |       | 255         |                              |
| -   | -   | 06      |                        | FF   | 255                       |       | 255         |                              |
| -   | -   | 07      |                        | 00   | 0                         |       | 0           |                              |
| V   |     | 08      |                        | 09   | 9                         |       | BOE         | ID = BOE                     |
| V   |     | 09      | ID Manufacturer Name   | E5   | 229                       |       |             |                              |
|     | V   | 0A      | ID Product Code        | 8E   | 142                       |       | 2446        |                              |
|     | V   | 0B      | ID Product Code        | 09   | 9                         |       |             | ID = 2446                    |
| V   |     | 0C      |                        | 00   | 0                         |       | 0           |                              |
| V   |     | 0D      | 22 bit corial No       | 00   | 0                         |       | 0           |                              |
| V   |     | 0E      | 32-bit serial No.      | 00   | 0                         |       | 0           |                              |
| V   |     | 0F      |                        | 00   | 0                         |       | 0           |                              |
| V   |     | 10      | Week of manufacture    | 01   | 1                         |       | 1           |                              |
| V   |     | 11      | Year of Manufacture    | 1E   | 30                        |       | 2020        | Manufactured in 2020         |
| V   |     | 12      | EDID Structure Ver.    | 01   | 1                         |       | 1           | EDID Ver 1.0                 |
| V   |     | 13      | EDID revision #        | 04   | 4                         |       | 4           | EDID Rev. 0.4                |
| V   | V   | 14      | Video input definition | A5   | 165                       |       | -           | Refer to right table         |
|     | V   | 15      | Max H image size       | 22   | 34                        |       | 34          | 34.4 cm (Approx)             |
|     | V   | 16      | Max V image size       | 13   | 19                        |       | 19          | 19.4 cm (Approx)             |
|     | V   | 17      | Display Gamma          | 78   | 120                       |       | 2.2         | Gamma curve = 2.2            |
| V   |     | 18      | Feature support        | 03   | 3                         |       | -           | Refer to right table         |
|     | V   | 19      | Red/Green low bits     | AA   | 170                       |       | -           | Red / Green Low Bits         |
|     | V   | 1A      | Blue/White low bits    | 25   | 37                        |       | -           | Blue / White Low Bits        |
| •   | V   | 1B      | Red x high bits        | A5   | 165                       | 662   | 0.646       | Red (x) = 10100101 (0.646)   |
|     | V   | 1C      | Red y high bits        | 55   | 85                        | 342   | 0.334       | Red (y) = 01010101 (0.334)   |
|     | V   | 1D      | Green x high bits      | 4D   | 77                        | 310   | 0.303       | Green (x) = 01001101 (0.303) |
|     | V   | 1E      | Green y high bits      | 9C   | 156                       | 626   | 0.611       | Green (y) = 10011100 (0.611) |
|     | V   | 1F      | Blue x high bits       | 27   | 39                        | 156   | 0.152       | Blue (x) = 00100111 (0.152)  |
|     | V   | 20      | BLue y high bits       | 10   | 16                        | 66    | 0.064       | Blue (y) = 00010000 (0.064)  |
|     | V   | 21      | White x high bits      | 50   | 80                        | 321   | 0.313       | White (x) = 01010000 (0.313) |
|     | V   | 22      | White y high bits      | 54   | 84                        | 337   | 0.329       | White (y) = 01010100 (0.329) |
| V   |     | 23      | Established timing 1   | 00   | 0                         |       | -           |                              |
| V   |     | 24      | Established timing 2   | 00   | 0                         |       | -           | Refer to right table         |
| V   |     | 25      | Established timing 3   | 00   | 0                         |       | -           |                              |





| V |   | 26 | Standard timing #1              | 01 | 1   |  |       | Not Used                                            |
|---|---|----|---------------------------------|----|-----|--|-------|-----------------------------------------------------|
| ۷ |   | 27 | Stanuaru unning #1              | 01 | 1   |  |       | Not used                                            |
| V |   | 28 | Standard timing #2              | 01 | 1   |  |       | Not Used                                            |
| V |   | 29 |                                 | 01 | 1   |  |       | Not used                                            |
| ۷ |   | 2A | Standard timing #3              | 01 | 1   |  |       | Not Used                                            |
| ۷ |   | 2B |                                 | 01 | 1   |  |       |                                                     |
| ۷ |   | 2C | Standard timing #4              | 01 | 1   |  |       | Not Used                                            |
| ۷ |   | 2D |                                 | 01 | 1   |  |       |                                                     |
| V |   | 2E | Standard timing #5              | 01 | 1   |  |       | - Not Used                                          |
| V |   | 2F |                                 | 01 | 1   |  |       |                                                     |
| V |   | 30 | Standard timing #6              | 01 | 1   |  |       | Netlleed                                            |
| V |   | 31 |                                 | 01 | 1   |  |       | Not Used                                            |
| V |   | 32 | Standard timing #7              | 01 | 1   |  |       | Natilizad                                           |
| V |   | 33 |                                 | 01 | 1   |  |       | - Not Used                                          |
| V |   | 34 | Chan david timing #0            | 01 | 1   |  |       | Natilizad                                           |
| V |   | 35 | Standard timing #8              | 01 | 1   |  |       | Not Used                                            |
|   | V | 36 |                                 | 99 | 153 |  | 152.6 | 152.5632MHz Main clock                              |
|   | V | 37 |                                 | 3B | 59  |  |       |                                                     |
|   | V | 38 |                                 | 80 | 128 |  | 1920  | Hor Active = 1920                                   |
|   | V | 39 |                                 | 10 | 16  |  | 272   | Hor Blanking = 272                                  |
|   | V | 3A |                                 | 71 | 113 |  | -     | 4 bits of Hor. Active + 4 bits of Hor. Blanking     |
|   | V | 3B |                                 | 38 | 56  |  | 1080  | Ver Active = 1080                                   |
|   | V | 3C |                                 | 50 | 80  |  | 80    | Ver Blanking = 80                                   |
|   | V | 3D |                                 | 40 | 64  |  | -     | 4 bits of Ver. Active + 4 bits of Ver. Blanking     |
|   | V | 3E | Detailed                        | 30 | 48  |  | 48    | Hor Sync Offset = $48$                              |
|   | V | 3F | timing/monitor<br>descriptor #1 | 20 | 32  |  | 32    | H Sync Pulse Width = $32$                           |
| · | V | 40 |                                 | 36 | 54  |  | 3     | V sync Offset = 3 line                              |
|   | V | 41 |                                 | 00 | 0   |  | 6     | V Sync Pulse width : 6 line                         |
|   | V | 42 |                                 | 58 | 88  |  | 344   | Horizontal Image Size = 344 mm (Low 8 bits)         |
|   | V | 43 |                                 | C2 | 194 |  | 194   | Vertical Image Size = 194 mm (Low 8 bits)           |
|   | V | 44 |                                 | 10 | 16  |  | -     | 4 bits of Hor Image Size + 4 bits of Ver Image Size |
|   | V | 45 |                                 | 00 | 0   |  | 0     | Hor Border (pixels)                                 |
|   | V | 46 |                                 | 00 | 0   |  | 0     | Vertical Border (Lines)                             |
|   | V | 47 |                                 | 1A | 26  |  | -     | Refer to right table                                |



| V | 48 |                                 | 00 | 0   |   |                                                     |
|---|----|---------------------------------|----|-----|---|-----------------------------------------------------|
| v | 49 |                                 | 00 | 0   | 0 | 0MHz Main clock                                     |
| V | 4A | _                               | 00 | 0   | 0 | Hor Active = 0                                      |
| V | 4B |                                 | 00 | 0   | 0 | Hor Blanking = 0                                    |
| V | 4C |                                 | 00 | 0   | - | 4 bits of Hor. Active + 4 bits of Hor. Blanking     |
| V | 4D |                                 | 00 | 0   | 0 | Ver Active = 0                                      |
| V | 4E |                                 | 00 | 0   | 0 | Ver Blanking = 0                                    |
| V | 4F |                                 | 00 | 0   | - | 4 bits of Ver. Active + 4 bits of Ver. Blanking     |
| V | 50 | Detailed                        | 00 | 0   | 0 | Hor Sync Offset = 0                                 |
| V | 51 | timing/monitor<br>descriptor #2 | 00 | 0   | 0 | H Sync Pulse Width = $0$                            |
| V | 52 |                                 | 00 | 0   | 0 | V sync Offset = 0 line                              |
| V | 53 |                                 | 00 | 0   | 0 | V Sync Pulse width : 0 line                         |
| V | 54 |                                 | 00 | 0   | 0 | Horizontal Image Size = 0 mm (Low 8 bits)           |
| V | 55 |                                 | 00 | 0   | 0 | Vertical Image Size = 0 mm (Low 8 bits)             |
| V | 56 |                                 | 00 | 0   | - | 4 bits of Hor Image Size + 4 bits of Ver Image Size |
| V | 57 |                                 | 00 | 0   | 0 | Hor Border (pixels)                                 |
| V | 58 |                                 | 00 | 0   | 0 | Vertical Border (Lines)                             |
| V | 59 |                                 | 00 | 0   | - | Refer to right above table                          |
| V | 5A |                                 | 00 | 0   |   | Indicates descriptor #3 is a display Descriptor     |
| V | 5B |                                 | 00 | 0   |   |                                                     |
| V | 5C |                                 | 00 | 0   |   | Reserved                                            |
| V | 5D |                                 | FE | 254 |   | Tag: ASCII String                                   |
| V | 5E |                                 | 00 | 0   |   | Reserved                                            |
| ۷ | 5F |                                 | 42 | 66  | В |                                                     |
| V | 60 |                                 | 4F | 79  | 0 |                                                     |
| V | 61 |                                 | 45 | 69  | E |                                                     |
| V | 62 | Detailed<br>timing/monitor      | 20 | 32  |   |                                                     |
| ۷ | 63 | descriptor #3                   | 43 | 67  | С |                                                     |
| V | 64 |                                 | 51 | 81  | Q |                                                     |
| V | 65 |                                 | 0A | 10  |   | Manufacture name : BOECQ                            |
| V | 66 |                                 | 20 | 32  |   |                                                     |
| V | 67 |                                 | 20 | 32  |   |                                                     |
| V | 68 |                                 | 20 | 32  |   |                                                     |
| V | 69 |                                 | 20 | 32  |   |                                                     |
| V | 6A |                                 | 20 | 32  |   |                                                     |
| V | 6B |                                 | 20 | 32  |   |                                                     |



|   |   | 60 |                                             | 00 | 0   |     |   |                                                 |  |
|---|---|----|---------------------------------------------|----|-----|-----|---|-------------------------------------------------|--|
| V |   | 6C | Detailed<br>timing/monitor<br>descriptor #4 | 00 | 0   |     |   | Indicates descriptor #4 is a display Descriptor |  |
| V |   | 6D |                                             | 00 | 0   |     |   |                                                 |  |
| V |   | 6E |                                             | 00 | 0   |     |   | Reserved                                        |  |
| V |   | 6F |                                             | FE | 254 |     |   | Tag: ASCII String                               |  |
| V |   | 70 |                                             | 00 | 0   |     |   | Reserved                                        |  |
| V |   | 71 |                                             | 41 | 65  |     | А | Model name : AM156FHM-N6A                       |  |
| V |   | 72 |                                             | 4D | 77  |     | М |                                                 |  |
| V |   | 73 |                                             | 31 | 49  |     | 1 |                                                 |  |
| V |   | 74 |                                             | 35 | 53  |     | 5 |                                                 |  |
| V |   | 75 |                                             | 36 | 54  |     | 6 |                                                 |  |
| V |   | 76 |                                             | 46 | 70  |     | F |                                                 |  |
| ۷ |   | 77 |                                             | 48 | 72  |     | Н |                                                 |  |
| V |   | 78 |                                             | 4D | 77  |     | М |                                                 |  |
| V |   | 79 |                                             | 2D | 45  |     | - |                                                 |  |
| V |   | 7A |                                             | 4E | 78  |     | N |                                                 |  |
| V |   | 7B |                                             | 36 | 54  |     | 6 |                                                 |  |
| V |   | 7C |                                             | 41 | 65  |     | А |                                                 |  |
| V |   | 7D |                                             | 0A | 10  |     |   |                                                 |  |
| V | V | 7E | Extension flag                              | 00 | 0   |     | 1 | 0:1個EDID; N-1: N个EDID                           |  |
| - | - | 7F | Checksum                                    | 9D | 157 | 157 | - |                                                 |  |



# **17.0 GENERAL PRECAUTIONS**

## **17.1 HANDLING**

(1) When the module is assembled, It should be attached to the system firmly using every mounting holes.

Be careful not to twist or bend the modules.

(2) Refrain from strong mechanical shock or any force to the module. Otherwise, it may cause improper operation or damage to the module.

(3) Note that polarizers are very fragile and could be easily damaged. Do not press or scratch the surface harder than 1 HB pencil lead.

(4) Wipe off water droplets or oil immediately. If you leave the droplets for a long time, Staining and discoloration may occur.

(5) If the surface of the polarizer is dirty, clean it using some absorbent cotton or soft cloth.

(6) The desirable cleaners are water, IPA (Isopropyl Alcohol) or Hexane. Do not use Ketone type materials(ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanently damage to the polarizer

due to chemical reaction.

(7) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth .In case of contact with hands, legs or clothes, it must be washed away thoroughly with soap.

(8) Protect the module from static, it may cause damage to the module.

(9) Use fingerstalls with soft gloves to keep display clean during the incoming inspection and assembly process.

(10) Do not disassemble the module.

(11) Do not pull or fold the LED FPC.

(12) Do not touch any component which is located on the back side.

(13) Protection film for polarizer on the module shall be slowly peeled off just before use so that the electrostatic charge can be minimized.

(14) Pins of connector shall not be touched directly with bare hands.

# **17.2 STORAGE**

(1) Do not leave the module in high temperature, and high humidity for a long time. It is highly recommended to store the module with temperature from 0 to  $35^{\circ}$ C and relative humidity of less than 70%.

(2) Do not store the TFT-LCD module in direct sunlight.

(3) The module shall be stored in a dark place. It is prohibited to apply sunlight or fluorescent light during the store.



#### **17.3 OPERATION**

(1) Do not connect, disconnect the module in the "Power On" condition.

(2) Power supply should always be turned on/off by following item 8.0 " Power on/off sequence ".

(3) Module has high frequency circuits. Sufficient suppression to the electromagnetic interference shall be done by system manufacturers. Grounding and shielding methods may be important to minimize the interference.

(4) The standard limited warranty is only applicable when the module is used for general notebook applications. If used for purposes other than as specified, BOE is not to be held reliable for the defective operations. It is strongly recommended to contact BOE to find out fitness for a particular purpose.

### **17.4 OTHERS**

(1) Avoid condensation of water. It may result in improper operation or disconnection of electrode.

(2) Do not exceed the absolute maximum rating value. ( the supply voltage variation, input voltage variation,

Variation in part contents and environmental temperature, so on) Otherwise the module may be damaged.

(3) If the module displays the same pattern continuously for a long period of time, it can be the situation when The "image sticks" to the screen.

(4) This module has its circuitry PCB's on the rear or bottom side and should be handled carefully to avoid being stressed.



Appendix A

The Measurement Methods for the Dimensions of Module

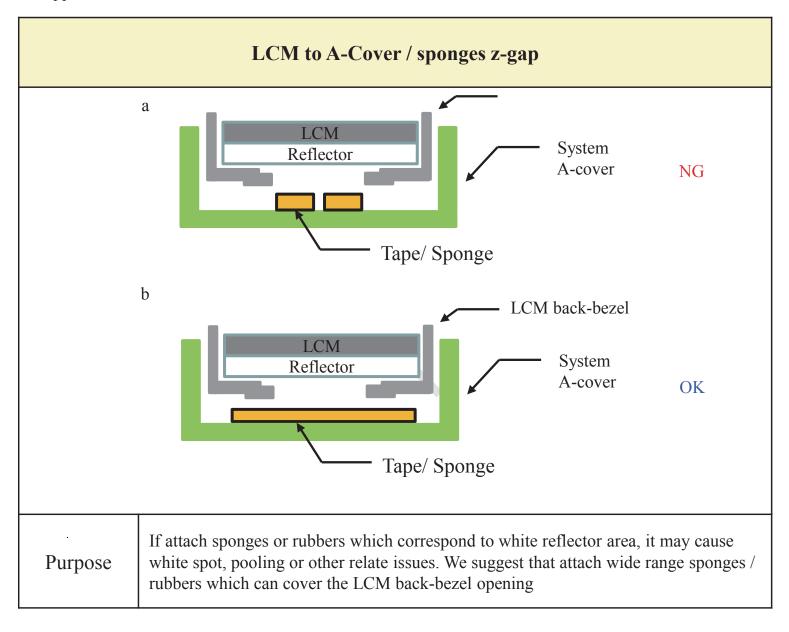
Caliper:

- a. Length of Outline
- b. Width of Outline (Without PCB)
- c. Thickness of Outline (Without/ With PCB)

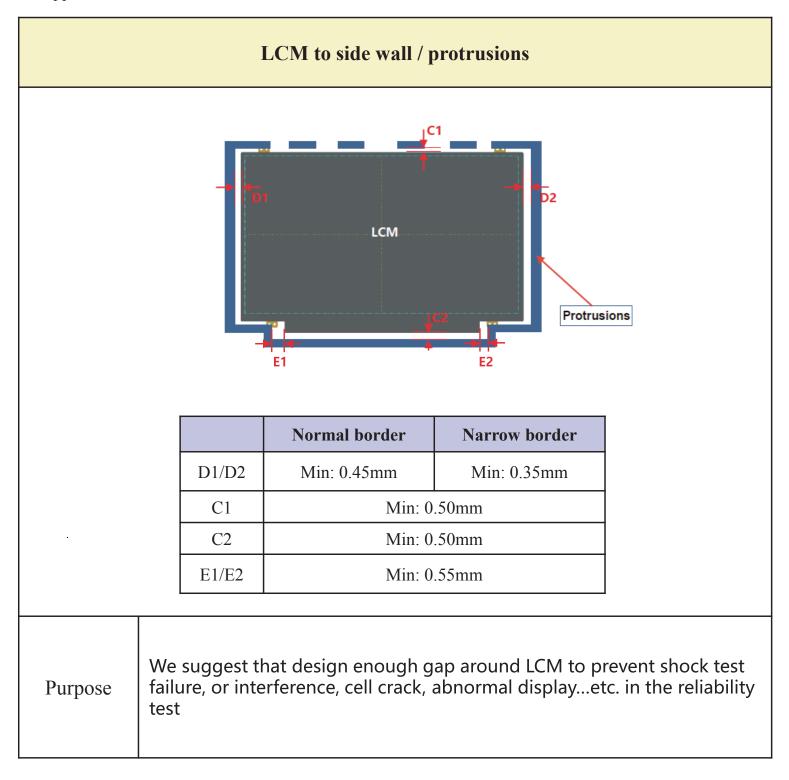
Coordinate Measuring Machine: CF Polarizer Size Active Area Size Active Area to Outline (Without Tape Wrinkle or Bulged) Active Area to CF Polarizer The Distance of Bracket Holes P-Cover to Outline (Without Tape Wrinkle or Bulged) Length of P-Cover Connector Pin 1 to Outline (Without Tape Wrinkle or Bulged)

Height Gauge: The Different Height of Root and Top on the Bracket (Need to Calculate From Bracket Angle Spec.)

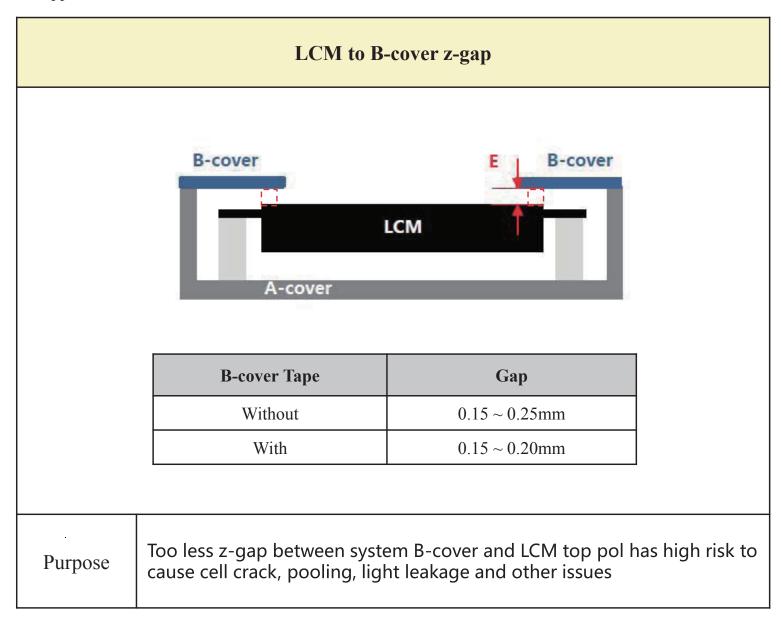
Feeler Gauge: The Warpage Spec. of Module


Notes:

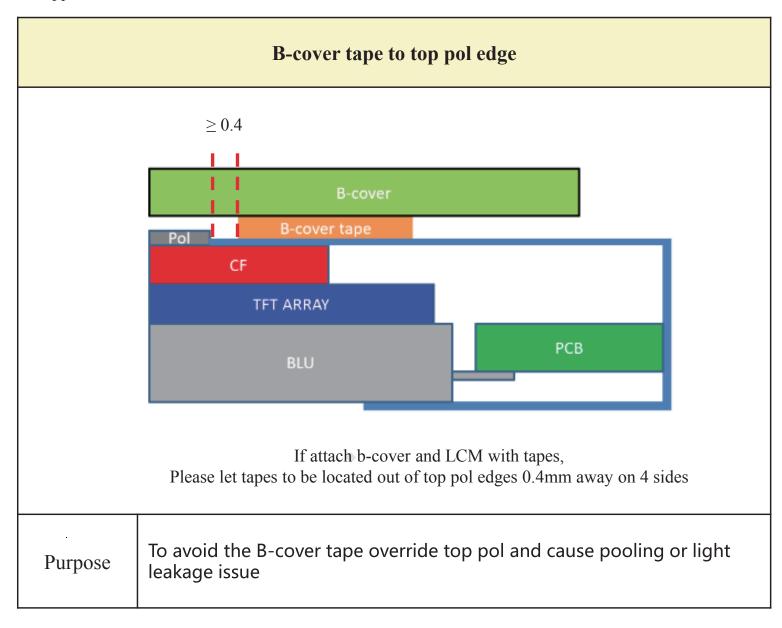
Except the Critical Dimensions as Above, Other Dimensions are Measured by Coordinate Measuring Machine If Necessary.




| LCM to A-Cover / sponges z-gap                                                                                                                                |   |   |                                       |                                     |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---------------------------------------|-------------------------------------|--|--|--|
| LCM                                                                                                                                                           |   |   |                                       |                                     |  |  |  |
|                                                                                                                                                               | _ |   | Plastic Cover<br>(LCM Thickness: Max) | Metal Cover<br>(LCM Thickness: Max) |  |  |  |
| LCM MAX                                                                                                                                                       |   | А | >0mm                                  | >0mm                                |  |  |  |
| A<br>sponge<br>A-cover                                                                                                                                        |   |   | Min: 1.0mm                            | Min: 0.8mm                          |  |  |  |
|                                                                                                                                                               |   |   | Without the open area of back cover   |                                     |  |  |  |
| Purpose The reflector area is very sensitive, we suggest that design enough z-gap to decrease the risk of water ripple, white spot and other abnormal display |   |   |                                       |                                     |  |  |  |

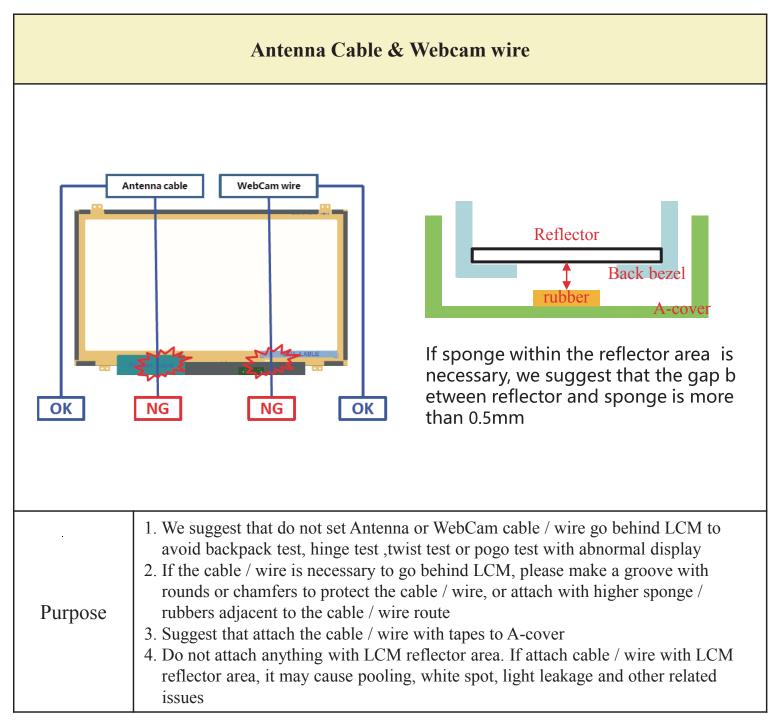






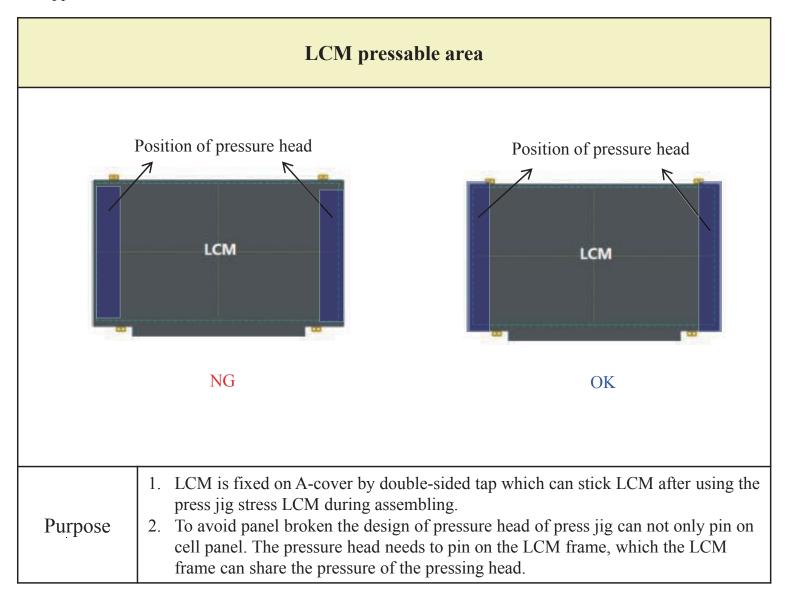


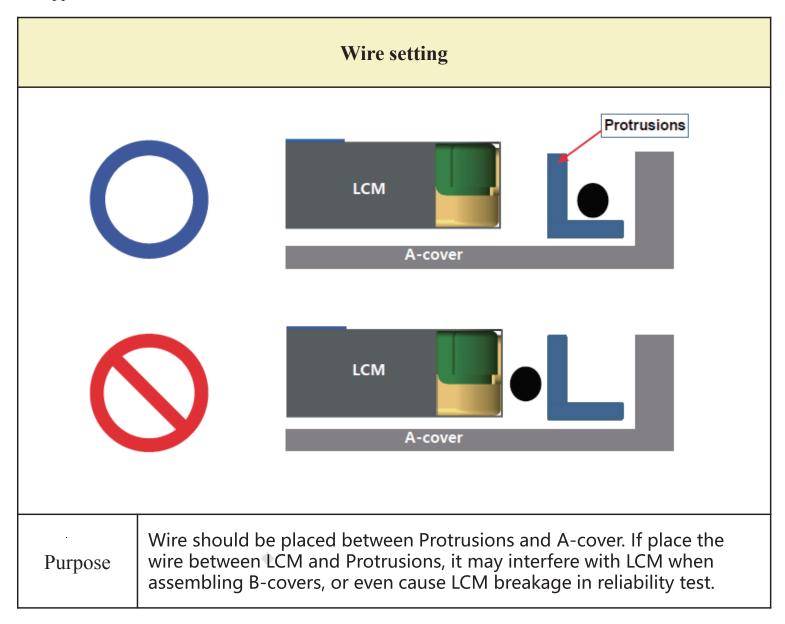




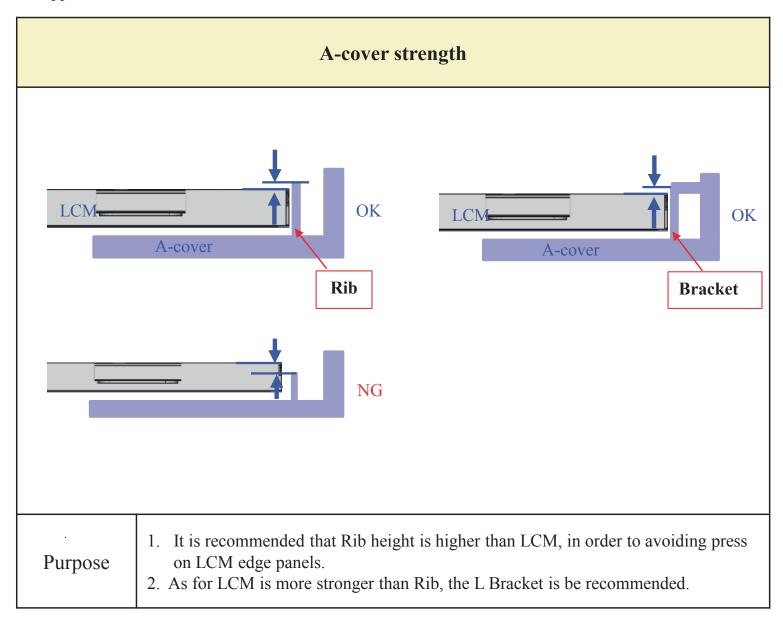


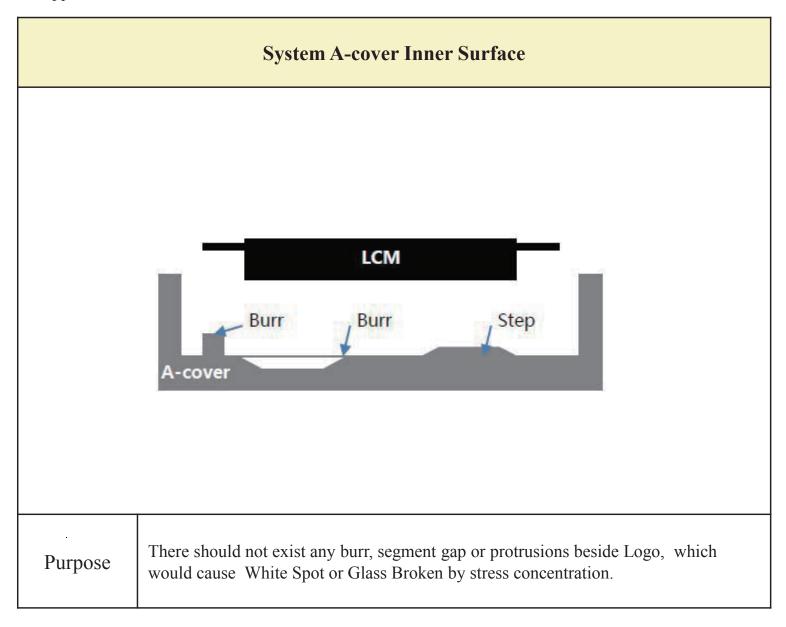


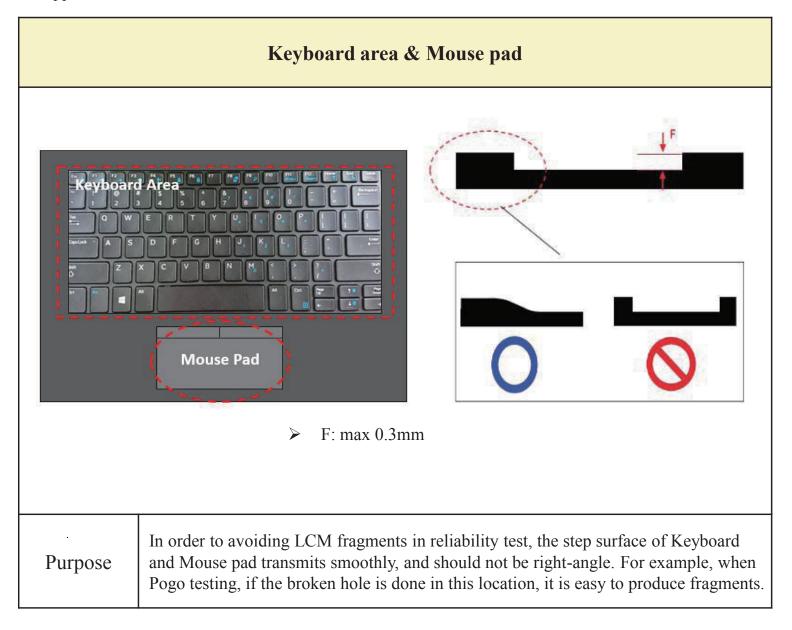

|         | LCM paste area                                                                                                                                                                                         |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | <image/>                                                                                                                                                                                               |
| Purpose | If use the stretch remove tapes to fix LCM with A-cover, please set the stretch remove tapes correspond to the LCM back-bezel and do not let the tapes override the back-bezel's level step of opening |



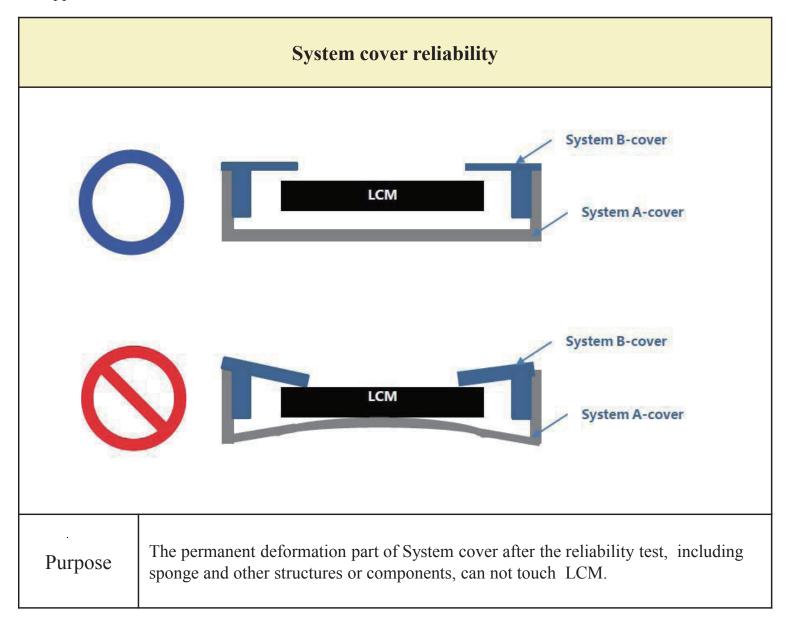


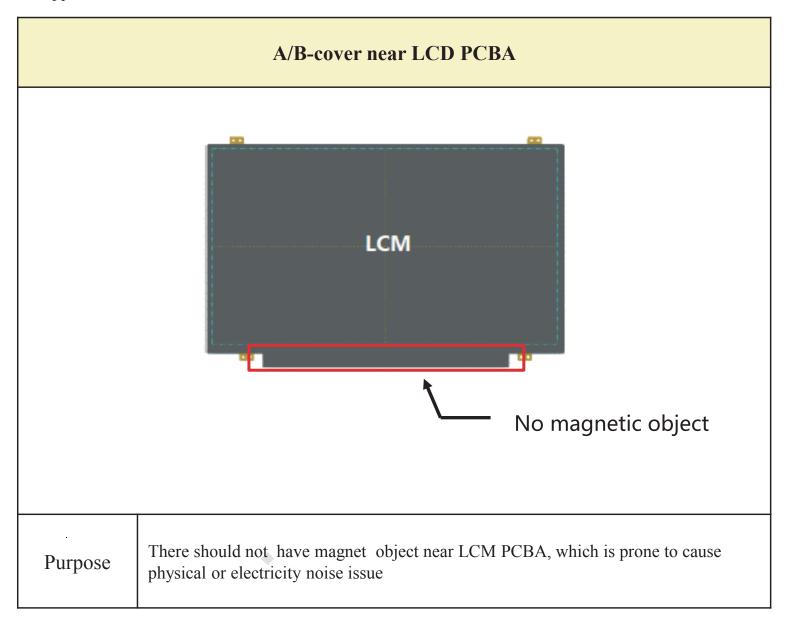


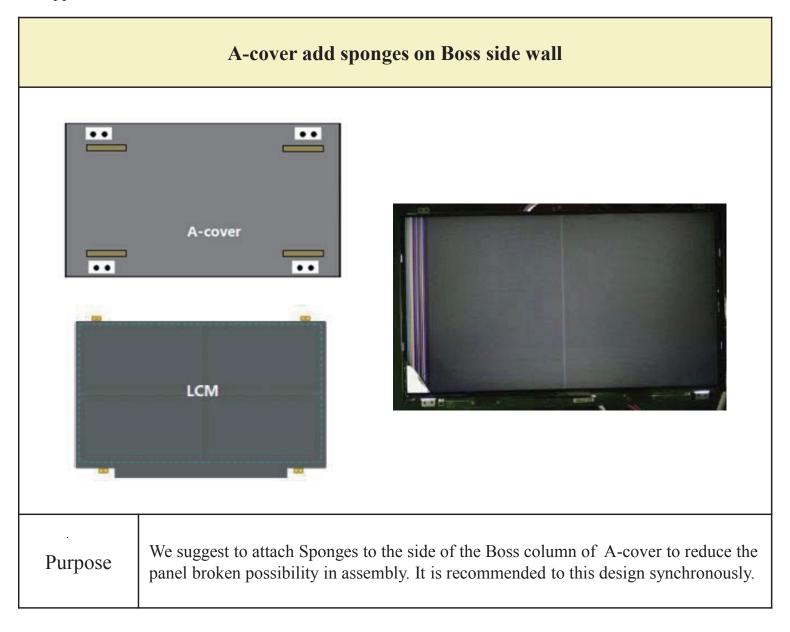




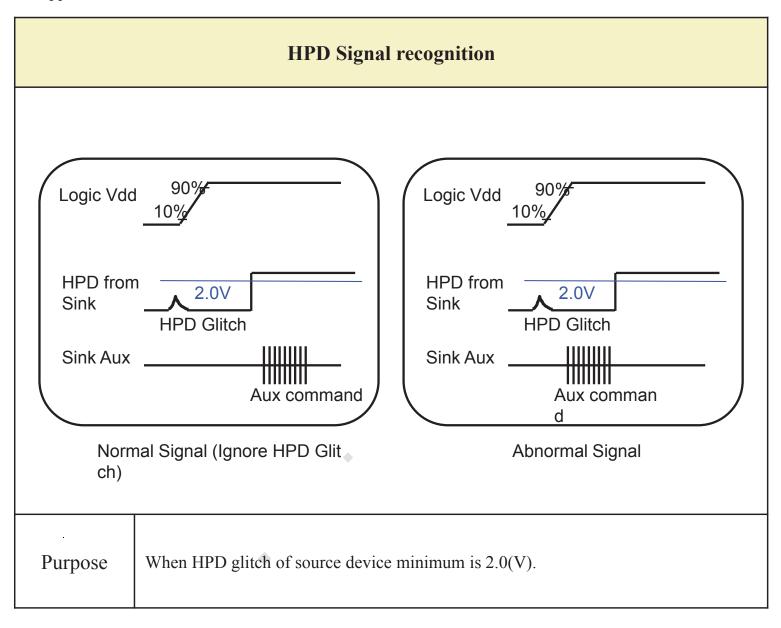


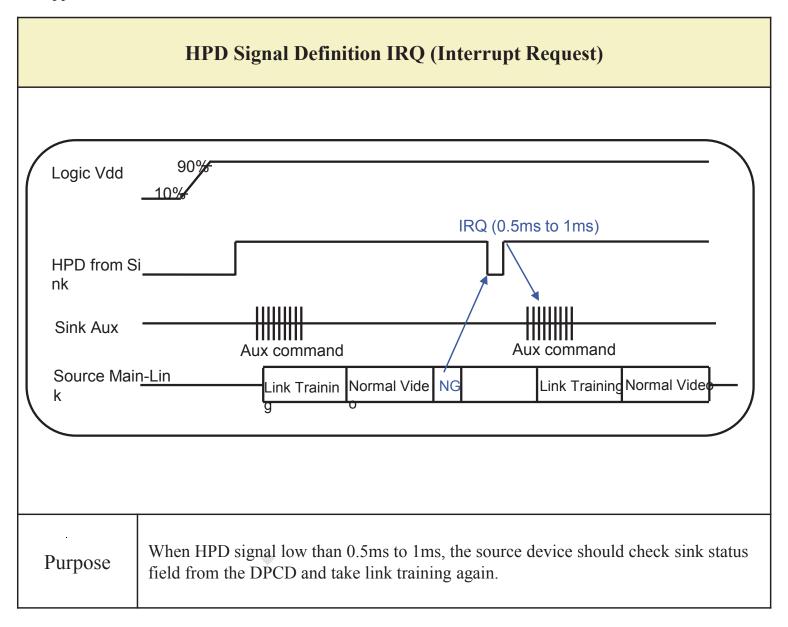









| LCM to A-Cover / sponges z-gap |                                                                                                                                                                                                                                                             |  |  |  |  |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                |                                                                                                                                                                                                                                                             |  |  |  |  |
| Ć                              |                                                                                                                                                                                                                                                             |  |  |  |  |
| Purpose                        | Bent product: The position of system connector and FPC should be staggered in X direction. Otherwise, when testing, the system Cable line extrudes FPC, leading to FPC Crack; (Panel FPC Bonding location is related to Mask and can not be changed easily) |  |  |  |  |

