Version: A

2019-02-19

Specification for Approval

Customer:	
Model Name:	

Sı	Customer approval		
R&D Designed	R&D Approved	QC Approved	
Peter	Peng Jun		

Version: A

2019-02-19

Revision Record

REV NO.	REV DATE	CONTENTS	Note
Α	2019-02-19	NEW ISSUE	

Version: A

2019-02-19

Table of Contents

List	Description	Page No.
	Cover	1
	Revision Record	2
	Table of Contents	3
1	Scope	4
2	General Information	4
3	External Dimensions	5
4	Interface Description	6
5	Absolute Maximum Ratings	7
6	DC Characteristics	7
7	Timing Characteristics	8
8	Backlight Characteristics	10
9	Optical Characteristics	11
10	Reliability Test Conditions and Methods	13
11	Inspection Standard	14
12	Handling Precautions	19
13	Precaution for Use	20
14	Packing Method	20

Version: A

2019-02-19

1. Scope

This specification defines general provisions as well as inspection standards for TFT module supplied by AMSON electronics.

If the event of unforeseen problem or unspecified items may occur, naturally shall negotiate and agree to solution.

2. General Information

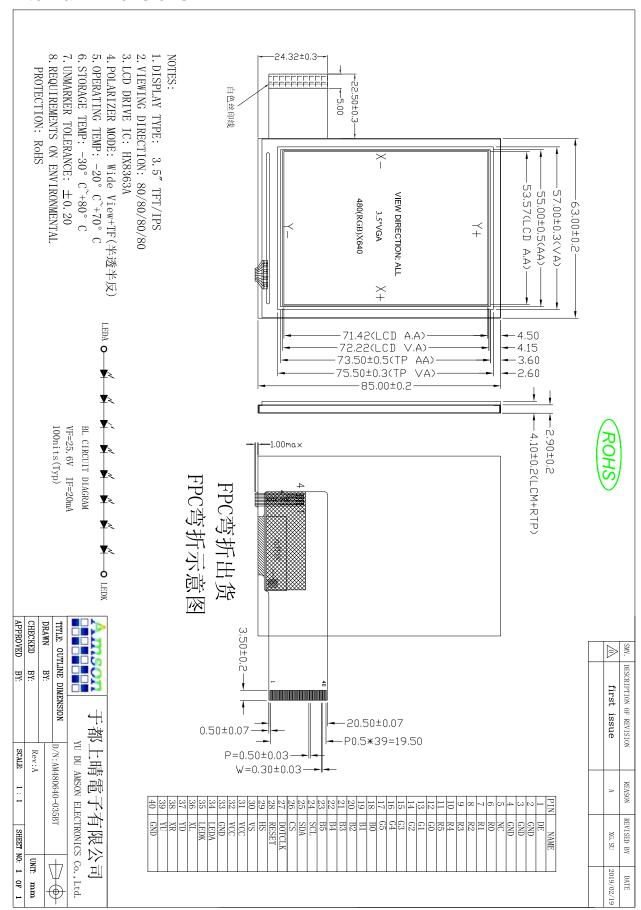
TITEM	STANDARD VALUES	UNITS
LCD type	3.5"TFT	
Dot arrangement	480(RGB)×640	dots
Color filter array	RGB vertical stripe	
Display mode	Transflective / Normally Black	-
Eyes Viewing Direction	80/80/80/80 deg(U/D/L/R @ C/R>10)	
Driver IC	HX8363A	
Module size	63(W)×85(H)×4.1(T)	mm
Active area	53.568W)×71.424(H)	mm
Dot pitch	0.116(W)×0.116(H)	mm
Interface	3-wire SPI + RGB interface	
Operating temperature	-20 ~ +70	°C
Storage temperature	-30 ~ +80	°C
Back Light	8 White LEDS	

Note 1: Viewing direction for best image quality is different from TFT definition, there is a 180 degree shift.

Note 2: Requirements on Environmental Protection: RoHS

Note 3: LCM weight tolerance: +/- 5%

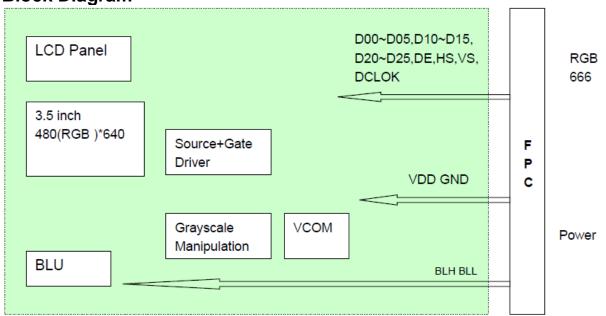
RTP


NIF		
ITEM	STANDARD VALUES	UNITS
RTP type	Film + Glass + FPC	
Surface hardness	3H	
Transmittance	≥80%	
RTP size	62.50(W)×83.5 (H)×1.2(T)	mm
Active area	55.00(W)×73.5(H)	mm
Response Time	≤15ms	ms
Linearity	≤1.5%	%
Line writing life	10000	times
Operation force	50~120g	g
Resistance	X:150Ω ~ 900Ω Y:150Ω ~ 900Ω	Ω

Version: A

2019-02-19

3. External Dimensions


Version: A

2019-02-19

4. Interface Description

PIN	PIN NAME	DESCRIPTION
1	ENABLE	Data enable signal in RGB I/F mode
2-4	GND	Power ground
5	NC	NC
6-11	R0-R5	RED DATE
12-17	G0-G5	GREEN DATE
18-23	B0-B5	BIUE DATE
24	SCL	Serial clock input in SPI interface
25	SDI	Serial input signal in SPI I/F.
26	CS	Chip Select pin for Serial Mode Interface
27	DOTCLK	Pixel clock signal in RGB I/F.
28	RESET	Reset pin
29	HS	Horizontal sync signal in RGB I/F.
30	VS	Vertical sync signal in RGB I/F.
31-32	VCI	A supply voltage to the analog circuit.
33	GND	Power ground
34	LEDK	LED backlight (Cathode).
35	LEDA	LED backlight (Anode).
36	XL	RTP PIN
36	YD	RTP PIN
36	XR	RTP PIN
36	YU	RTP PIN
40	GND	Power ground

Block Diagram

Version: A

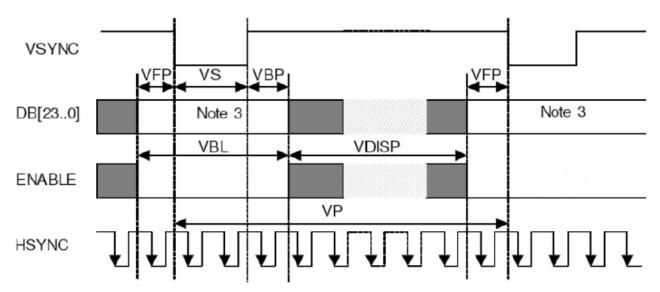
2019-02-19

5. Absolute Maximum Ratings

Driving TFT LCD Panel

Item	Symbol	MIN	MAX	Unit	Remark
Supply Voltage	V_{DD}	-0.3	4.6	V	
Operating Temperature	Topr	-20	70	$^{\circ}$	
Storage Temperature	Tstg	-30	80	$^{\circ}$	

6. DC Characteristics


Item		Symbol	MIN	TYP	MAX	Unit	Remark
Supply Vo	altaga	$ m V_{cc}$	2.5	3.0	3.3	V	
Supply vo	nage	IOVCC	1.65	3.0	3.3		
Input Signal	Low Leve	$V_{I\!L}$	0	-	0.3x IOVCC	V	
Voltage	High Level	VIH	0.7x IOVCC	-	IOVCC	V	
Output Signal	Low Leve	Vol	0	-	0.2*IOVCC	V	
Voltage	High Level	Voh	0.8*IOVCC	-	IOVCC	V	

Version: A

2019-02-19

7. Timing Characteristics 7.1 RGB Interface Timing

Vertical Timings for RGB I/F

(Resolution=480x854, VSSA=VSSD=0V, VDD1=1.65V to 3.3V, VDD2=2.5 to 3.3V, VDD3=2.5 to 3.3V, $T_A = -30$ to $70 \,^{\circ}\text{C}$)

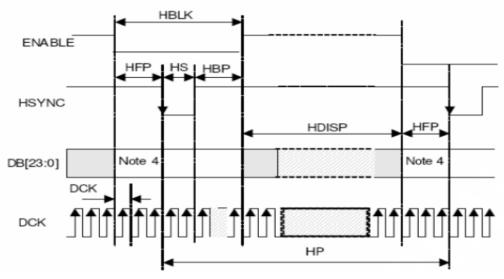
Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Vertical cycle	VP		860		864	Line
Vertical low pulse width	VS	-	2	-	4	Line
Vertical front porch	VFP	-	2	-	4	Line
Vertical back porch	VBP	-	2	-	4	Line
Vertical data start point	-	VS+VBP	4	-	8	Line
Vertical blanking period	VBL	VS+VBP+VFP	6	-	10	Line
Vertical active area	-	VDISP	-	854	-	Line
Vertical Refresh rate	VRR	-	50	-	70	Hz

Note: (1) Signal rise and fall times are equal to or less than 20 ns.

- (2) Input signals are measured by 0.30 x VDD1 for low state and 0.70 x VDD1 for high state.
- (3) Data lines can be set to "High" or "Low" during blanking time Don't care.
- (4) VRR must keep from 50Hz to 70Hz when adjust other items.

(Resolution=480x800, VSSA=VSSD=0V, VDD1=1.65V to 3.3V, VDD2=2.5 to 3.3V, VDD3=2.5 to 3.3V, $T_{\Lambda} = -30$ to $70 \,^{\circ}$ C)

ltem	Symbol	Condition	Min.	Тур.	Max.	Unit
Vertical cycle	VP	-	806	-	810	Line
Vertical low pulse width	VS	-	2	-	4	Line
Vertical front porch	VFP	-	2	-	4	Line
Vertical back porch	VBP	-	2	-	4	Line
Vertical data start point	-	VS+VBP	4	-	8	Line
Vertical blanking period	VBL	VS+VBP+VFP	6	-	10	Line
Vertical active area	-	VDISP	-	800	-	Line
Vertical Refresh rate	VRR	-	50	-	70	Hz


Note: (1) Signal rise and fall times are equal to or less than 20 ns.

- (2) Input signals are measured by 0.30 x VDD1 for low state and 0.70 x VDD1 for high state.
- (3) Data lines can be set to "High" or "Low" during blanking time Don't care.
- (4) VRR must keep from 50Hz to 70Hz when adjust other items.

Version: A

2019-02-19

Horizontal Timings for RGB I/F

(Resolution=480x854, VSSA=VSSD=0V, VDD1=1.65V to 3.3V, VDD2=2.5 to 3.3V, VDD3=2.5 to 3.3V, $T_A = -30$ to 70 °C)

ltem	Symbol	Condition	Min.	Тур.	Max.	Unit
HS cycle	HP	Note ⁽³⁾	504	-	568	DCK
HS low pulse width	HS	-	5	-	78	DCK
Horizontal back porch	HBP	-	5	ı	78	DCK
Horizontal front porch	HFP	-	5	•	78	DCK
Horizontal data start point	-	HS+HBP	19	ı	83	DCK
Horizontal blanking period	HBLK	HS+HBP+HFP	24	-	88	DCK
Horizontal active area	HDISP		1	480	-	DCK
Pixel clock frequency	DCK	VRR = Min. 50Hz	21.6	1	34.3	MHz
When RGB I/F is running	DOR	- Max. 70Hz	29.1	-	46.2	ns

Note: (1) Signal rise and fall times are equal to or less than 20 ns.

- (2) Input signals are measured by 0.30 x VDD1 for low state and 0.70 x VDD1 for high state.
- (3) HP is multiples of eight DCK.
- (4)Data lines can be set to "High" or "Low" during blanking time Don't care.
- (5) VRR must keep from 50Hz to 70Hz when adjust other items.

(Resolution=480x800, VSSA=VSSD=0V, VDD1=1.65V to 3.3V, VDD2=2.5 to 3.3V, VDD3=2.5 to 3.3V, $T_A = -30$ to 70 °C)

Item	Symbol	Condition	Min.	Тур.	Max.	Unit
HS cycle	HP	Note ⁽³⁾	504	-	568	DCK
HS low pulse width	HS		5	-	78	DCK
Horizontal back porch	HBP		5	-	78	DCK
Horizontal front porch	HFP	•	5	-	78	DCK
Horizontal data start point	-	HS+HBP	19	-	83	DCK
Horizontal blanking period	HBLK	HS+HBP+HFP	24	-	88	DCK
Horizontal active area	HDISP		-	480	-	DCK
Pixel clock frequency	DCK	VRR = Min. 50Hz	20.3	-	32.2	MHz
When RGB I/F is running	DCK	- Max. 70Hz	31	-	49.2	ns

Note: (1) Signal rise and fall times are equal to or less than 20 ns.

- (2) Input signals are measured by 0.30 x VDD1 for low state and 0.70 x VDD1 for high state.
- (3) HP is multiples of eight DCK.
- (4)Data lines can be set to "High" or "Low" during blanking time Don't care.
- (5) VRR must keep from 50Hz to 70Hz when adjust other items.

Version: A

2019-02-19

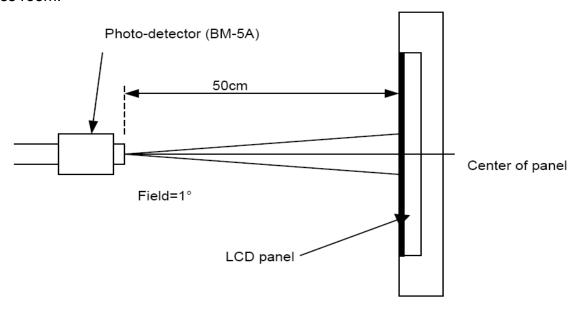
8. Backlight Characteristic

Item	Symbol	MIN	TYP	MAX	Unit	Remark
Forward Current	I_{F}	-	20		mA	
Forward Voltage	VF	24	25.6		V	
Backlight Power consumption	W _{BL}	-	TBD	-	W	

Note 1: Each LED: IF =20 mA, VF =3.2V.

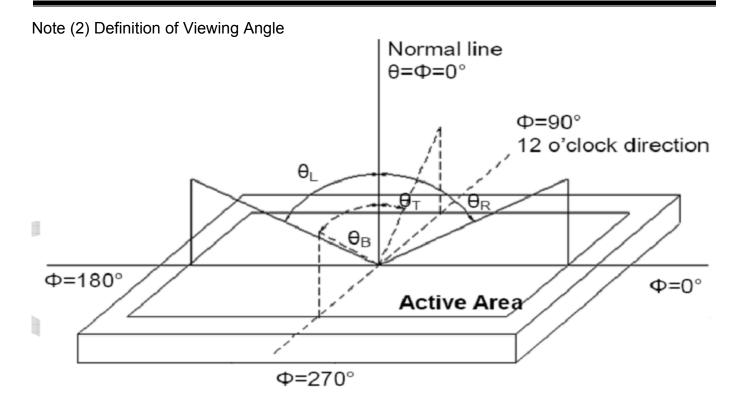
Note 2: Optical performance should be evaluated at Ta=25 $^{\circ}$ C only.

Note 3: If LED is driven by high current, high ambient temperature & humidity condition. The life time of LED will be reduced. Operating life means brightness goes down to 50% initial brightness. Typical operating life time is estimated data.


Version: A

2019-02-19

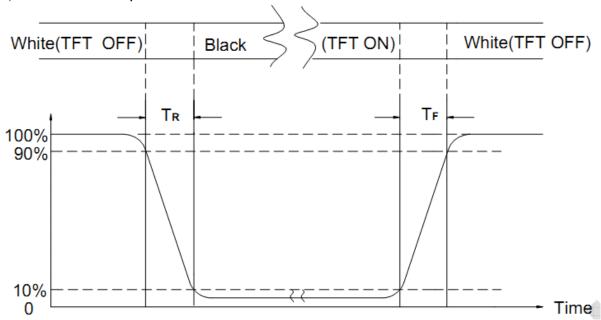
9. Optical Characteristics


Item	Conditions		Min.	Тур.	Max.	Unit	Note	
Viewing Angle	Horizontal	θL	ı	80	-	degree		
	TIONZONIai	θR	ı	80	-		(1),(2),(6)	
(CR>10)	Vertical	θт	ı	80	-			
	Vertical	θв	ı	80	-			
Center Luminance of White	Lc		80	100	-	cd/m ²		
Contrast Ratio	Center		ı	300	ı	ı	(1),(3),(6)	
Response Time	Rising		- 25	25	25 35	me	(1) (4) (6)	
Response fille	Falling			25		ms	(1),(4),(6)	
	Red x		Typ. -0.05	ı	Typ. +0.05	ı		
	Red y			ı		ı		
	Green x			ı		ı		
CF Color	Green y			ı		ı	(1) (6)	
Chromaticity (CIE1931)	Blue x			ı		ı	(1), (6)	
	Blue y			-		-		
	White x			-		-		
	White y			-		-		

Note (1) Measurement Setup: The LCD module should be stabilized at given temp. 25°C for 15 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting backlight for 15 minutes in a windless room.

Version: A

2019-02-19



Note (3) Definition of Contrast Ratio (CR)

The contrast ratio can be calculated by the following expression Contrast Ratio (CR) = L63 / L0

L63: Luminance of gray level 63, L0: Luminance of gray level 0

Note (4) Definition of response time

Note (5) Definition of Transmittance (Module is without signal input)

Transmittance = Center Luminance of LCD / Center Luminance of Back Light x 100%

Note (6) Definition of color chromaticity (CIE1931)

Color coordinates measured at the center point of LCD

Version: A

2019-02-19

10. Reliability Test Conditions and Methods

		TEST CONDITION				
1	High Temperature Storage	Keep in 80°C ±5°C 240 hrs Surrounding temperature, then storage at normal condition 4hrs.				
2	Low Temperature Storage	Keep in -30°C ±5°C 240 hrs Surrounding temperature, then storage at normal condition 4hrs.				
3	High Temperature / High Humidity Storage Test	Keep in 60 ℃ / 90% R.H duration for 240 hrs Surrounding temperature, then storage at normal condition 4hrs. (Excluding the polarizer)				
4	Temperature Cycling Storage Test	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
		Air Discharge: Apply 2 KV with 5 times Discharge for each polarity +/- Contact Discharge: Apply 250 V with 5 times discharge for each polarity				
(5)	ESD Test	 Temperature ambiance: 15°C~35°C Humidity relative: 30%~60% Energy Storage Capacitance(Cs + Cd): 150pF±10% Discharge Resistance(Rd): 330Ω±10% Discharge, mode of operation: Single Discharge (time between successive discharges at least 1 sec) (Tolerance if the output voltage indication: ±5%) 				
6	Vibration Test (Packaged)	 Sine wave 10~55 Hz frequency (1 min/sweep) The amplitude of vibration :1.5 mm Each direction (X, Y, Z) duration for 2 Hrs 				
7	Drop Test (Packaged)	Packing Weight (Kg) Drop Height (cm) 0 ~ 45.4 122 45.4 ~ 90.8 76 90.8 ~ 454 61 Over 454 46 Drop				

Version: A

2019-02-19

11. Inspection Standard

11.1. QUALITY:

THE QUALITY OF GOODS SUPPLIED TO PURCHASER SHALL COME UP TO THE FOLLOWING STANDARD.

11.1.1. INSPECTIONTOOLS AND INSTRUMENTS

Vernier calipers, film scales, multimeter, magnifying eyepiece, ND5%, luminance meter and so on.

11.1.2. THE METHOD OF PRESERVING GOODS

AFTER DELIVERY OF GOODS FROM AMSON TO PURCHASER. PURCHASER SHALL CONTROL THE LCM AT -10 TO 40 ,AND IT MIGHT BE DESIRABLE TO KEEP AT THE NORMAL ROOM TEMPERATURE AND HUMIDITY UNTIL INCOMING INSPECTION OR THROWING INTO PROCESS LINE.

11.1.3. INCOMING INSPECTION

(A) THE METHOD OF INSPECTION

IF PURCHASER MAKE AN INCOMING INSPECTION, A SAMPLING PLAN SHALL BE APPLIED ON THE CONDITION THAT QUALITY OF ONE DELIVERY SHALL BE REGARDED AS ONE LOT.

(B) THE STANDARD OF QUALITY

ISO-2859-1 (SAME AS MIL-STD-105E), LEVEL: II

`	, , ,
CLASS	AQL(%)
CRITICAL	0.4 %
MAJOR	0.65 %
MINOR	1.5 %

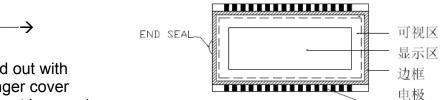
EVERY ITEM SHALL BE INSPECTED ACCORDING TO THE CLASS.

(C) MEASURE

IF AS THE RESULT OF ABOVE RECEIVING INSPECTION, A LOT OUT IS DISCOVERED. PURCHASER SHALL BE INFORM SELLER OF IT WITHIN SEVEN DAYS. BUT FIRST SHIPMENT WITHIN FOURTEEN DAYS.

11.1.4. WARRANTY POLICY

AMSON WILL PROVIDE ONE-YEAR WARRANTY FOR THE PRODUCTS ONLY IF UNDER SPECIFICATION OPERATING CONDITIONS. AMSON WILL REPLACE NEW PRODUCTS FOR THESE DEFECT PRODUCTS WHICH UNDER WARRANTY PERIOD AND BELONG TO THE RESPONSIBILITY OF AMSON.


11.2. CHECKING CONDITION

- **11.2.1.**CHECKING DIRECTION SHALL BE IN THE 45 DEGREE AREA TO FACE THE SAMPLE.
- 11.2.2.CHECKER SHALL SEE OVER 300±25 mm. WITH BARE EYES FAR FROM SAMPLE
- **11.2.3.**Ambient Illumination:

0 ~30 Lux for functional inspection

500 ~ 1200 Lux for external appearance inspection.

11.2.4. TEST AREA:

11.2.5. Inspection should be carried out with rope electrostatic ring and static finger cover (both hands except small fingers must be worn)

Version: A

2019-02-19

- **11.2.6.** The inspector may make a visual inspection or a comparative examination with a film ruler and a magnifying eyepiece. Individual defects shall be determined according to the limited samples.
- **11.2.7.** Functional testing uses electrical testing fixtures or test fixtures required by customers.
- **11.2.8.** the ion fan should be used when testing.

11.2.9. the principle of judgment

11.3.1 If the defect outside the visual area does not affect the assembly and display, it will be judged as a good product.

11.3.2 Poor definition

Pixel:

A combination of three sub-pixels (Red + Green + Blue).

Dot:

Any of the sub-pixels (Red or Green or Blue).

Bright and dark dots:

A point pixel (sub-pixel: R, G, B pixels) is lit or turned off during the display function test. **Highlights**:

Usually considered to be shown on a black screen.

Dark spots:

They are generally considered to be shown on R, G, B solid colors or white images.

Neighborhood:

Two or three adjacent point pixels (dot: sub-pixel) connected together (R, G or G, B or B, R or RGB).

Version: A

2019-02-19

11.3. INSPECTION PLAN:

	TION PLAN :		
CLASS	ITEM	JUDGEMENT	CLASS
PACKING &	OUTSIDE AND INSIDE PACKAGE	"MODEL NO." , "LOT NO." AND "QUANTITY" SHOULD INDICATE ON THE PACKAGE.	Minor
INDICATE	2. MODEL MIXED AND QUANTITY	OTHER MODEL MIXEDREJECTED QUANTITY SHORT OR OVERREJECTED	Critical
	3. PRODUCT INDICATION	"MODEL NO." SHOULD INDICATE ON THE PRODUCT	Major
ASSEMBLY	4. DIMENSION, LCD GLASS SCRATCH AND SCRIBE DEFECT.	ACCORDING TO SPECIFICATION OR DRAWING.	Major
	5. VIEWING AREA	POLARIZER EDGE OR LCD'S SEALING LINE IS VISABLE IN THE VIEWING AREAREJECTED	Minor
	6. BLEMISH - BLACK SPOT - WHITE SPOT IN THE LCD AND LCD GLASS CRACKS	ACCORDING TO STANDARD OF VISUAL INSPECTION(INSIDE VIEWING AREA)	Minor
APPEARANCE	7. BLEMISH - BLACK SPOT WHITE SPOT AND SCRATCH ON THE POLARIZER	ACCORDING TO STANDARD OF VISUAL INSPECTION(INSIDE VIEWING AREA)	Minor
	8. BUBBLE IN POLARIZER	ACCORDING TO STANDARD OF VISUAL INSPECTION(INSIDE VIEWING AREA)	Minor
	9. LCD'S RAINBOW COLOR	STRONG DEVIATION COLOR (OR NEWTON RING) OF LCDREJECTED. OR ACCORDING TO LIMITED SAMPLE (IF NEEDED, AND INSIDE VIEWING AREA)	Minor
	10. ELECTRICAL AND OPTICAL CHARACTERISTICS (CONTRAST, VOP, CHROMATICITY ETC)	ACCORDING TO SPECIFICATION OR DRAWING . (INSIDE VIEWING AREA)	Critical
ELECTRICAL	11.MISSING LINE	MISSING DOT: LINE: CHARACTERREJECTED	Critical
	12.SHORT CIRCUIT WRONG PATTERN DISPLAY	NO DISPLAY - WRONG PATTERN DISPLAY - CURRENT CONSUMPTION OUT OF SPECIFICATION REJECTED	Critical
	13. DOT DEFECT (FOR COLOR AND TFT)		Minor

Version: A

2019-02-19

NO.	CLASS	ITEM	JUDGEMENT				
			(A) ROUND TYPE: unit : mm.				
			DIAMETER (mm.) ACCEPTABLE Q'TY				
			Φ ≤ 0.15 Distance≥1mm				
		DI AOK AND MUSTE ODOT	$0.15 < \Phi \leq 0.4$ 3 (Distance>15mm)				
		BLACK AND WHITE SPOT FOREIGN MATERIEL	0.4 < Φ 0				
11 4 1	MINOR		NOTE: Φ=(LENGTH+WIDTH)/2				
11.4.1	MINTOIN	BLEMISH	(B) LINEAR TYPE: unit : mm.				
		SCRATCH	LENGTH WIDTH ACCEPTABLE Q'TY				
			W ≦0.03 Distance≥1mm				
			$L \le 4.0 \ 0.03 < W \le 0.05 \ 3 \ (Distance>15mm)$				
			0.05 < W FOLLOW ROUND TYPE				
\vdash			-14				
			unit:mm.				
		BUBBLE IN POLARIZER	DIAMETER ACCEPTABLE Q'TY Φ ≤ 0.2 Distance≥1mm				
11 4 2	MINOR		0.2 < Φ ≤ 0.3 3 (Distance>15mm)				
	WIINOR		0.2 < Φ ≤ 0.3 3 (Distance=15Hill)				
			0.51				
		Dot Defect	Items ACC. Q'TY				
			Bright dot N≤2 (Distance≥15mm)				
			Dark dot N≤3 (Distance>15mm)				
			Pixel Define : Pixel				
			TIME -				
			R G B				
	MINIOD						
11.4.3	MINOR		◆ Dot → ◆ Dot →				
			Note 1: The definition of dot: The size of a defective dot over				
			1/2 of whole dot is regarded as one defective dot.				
			Definition:<1/2dot and visible by 5 % ND filter N ≦ 5				
			Note 2: Bright dot: Dots appear bright and unchanged in size				
			in which LCD panel is displaying under black pattern. Note 3: Dark dot: Dots appear dark and unchanged in size in				
			which LCD panel is displaying under pure red, green				
			,blue pattern.				
\vdash			,				
		Mura	Not visible thriugh 5% ND filter in 50% gray or judge				
11.4.4	MINOR		by limit sample if necessary				
$oldsymbol{ol}}}}}}}}}}}}}}}}}$							

Version: A

2019-02-19

NO.	CLASS	ITEM	JUDGEMEN	Т
11.4.4	MINOR	LCD GLASS CHIPPING	N S	Y > S Reject
11.4.5	MINOR	LCD GLASS CHIPPING	SX	X or Y > S Reject
11.4.6	MAJOR	LCD GLASS GLASS CRACK	Y	Y > (1/2) T Reject
11.4.7	MAJOR	LCD GLASS SCRIBE DEFECT	A + B	 a> L/3 , A>1.5mm. Reject B: ACCORDING TO DIMENSION
11.4.8	MINOR	LCD GLASS CHIPPING (ON THE TERMINAL AREA)	T	$\Phi = (x+y)/2 > 2.5 \text{ mm}$ Reject
11.4.9	MINOR	LCD GLASS CHIPPING (ON THE TERMINAL SURFACE)	TZX	Y > (1/3) T Reject
11.4.10	MINOR	LCD GLASS CHIPPING	T Z	Y > T Reject

Version: A

2019-02-19

12. Handling Precautions

12.1 Mounting method

The LCD panel of AMSON TFT module consists of two thin glass plates with polarizes which easily be damaged. And since the module in so constructed as to be fixed by utilizing fitting holes in the printed circuit board.

Extreme care should be needed when handling the LCD modules.

12.2 Caution of LCD handling and cleaning

When cleaning the display surface, Use soft cloth with solvent

[Recommended below] and wipe lightly

- Isopropyl alcohol
- Ethyl alcohol

Do not wipe the display surface with dry or hard materials that will damage the polarizer surface.

Do not use the following solvent:

- Water
- Aromatics

Do not wipe ITO pad area with the dry or hard materials that will damage the ITO patterns Do not use the following solvent on the pad or prevent it from being contaminated:

- Soldering flux
- Chlorine (CI), Sulfur (S)

If goods were sent without being silicon coated on the pad, ITO patterns could be damaged due to the corrosion as time goes on.

If ITO corrosion happen by miss-handling or using some materials such as Chlorine (CI), Sulfur (S) from customer, Responsibility is on customer.

12.3 Caution against static charge

The LCD module use C-MOS LSI drivers, so we recommended that you:

Connect any unused input terminal to power or ground, do not input any signals before power is turned on, and ground your body, work/assembly areas, and assembly equipment to protect against static electricity.

12.4 packing

- Module employs LCD elements and must be treated as such.
- Avoid intense shock and falls from a height.
- To prevent modules from degradation, do not operate or store them exposed direct to sunshine or high temperature/humidity

12.5 Caution for operation

- It is an indispensable condition to drive LCD's within the specified voltage limit since the higher voltage then the limit cause the shorter LCD life.
- An electrochemical reaction due to direct current causes LCD's undesirable deterioration, so that the use of direct current drive should be avoided.
- Response time will be extremely delayed at lower temperature then the operating temperature range and on the other hand at higher temperature LCD's how dark color in them. However those phenomena do not mean malfunction or out of order with LCD's, which will come back in the specified operation temperature.
- If the display area is pushed hard during operation, some font will be abnormally displayed but it resumes normal condition after turning off once.
- Slight dew depositing on terminals is a cause for electro-chemical reaction resulting in terminal open circuit.
 - Usage under the maximum operating temperature, 50%Rh or less is required.

Version: A

2019-02-19

12.6 storing

In the case of storing for a long period of time for instance, for years for the purpose or replacement use, the following ways are recommended.

- Storage in a polyethylene bag with the opening sealed so as not to enter fresh air outside in it. And with no desiccant.
- Placing in a dark place where neither exposure to direct sunlight nor light's keeping the storage temperature range.
- Storing with no touch on polarizer surface by the anything else. [It is recommended to store them as they have been contained in the inner container at the time of delivery from us

12.7 Safety

- It is recommendable to crash damaged or unnecessary LCD's into pieces and wash off liquid crystal by either of solvents such as acetone and ethanol, which should be burned up later.
- When any liquid leaked out of a damaged glass cell comes in contact with your hands, please wash it off well with soap and water

13. Precaution for Use

13.1

A limit sample should be provided by the both parties on an occasion when the both parties agreed its necessity. Judgment by a limit sample shall take effect after the limit sample has been established and confirmed by the both parties.

13.2

On the following occasions, the handing of problem should be decided through discussion and agreement between responsible of the both parties.

- When a question is arisen in this specification
- When a new problem is arisen which is not specified in this specifications
- When an inspection specifications change or operating condition change in customer is reported to AMSON TFT, and some problem is arisen in this specification due to the
- When a new problem is arisen at the customer's operating set for sample evaluation in the customer site.

14. Packing Method

TBD