Version: A

2022-02-09

Specification for Approval

Customer:	
Model Name:	

Supplier Approval			Customer approval
R&D Designed	R&D Approved	QC Approved	
Peter	Peng Jun		

Version: A

2022-02-09

Revision Record

A 2022-02-09 NEW ISSUE	REV NO.	REV DATE	CONTENTS	Note
	Α	2022-02-09	NEW ISSUE	

Version: A

2022-02-09

CONTENTS

1.	GENERAL DESCRIPTION	Page No.
2.	MECHANICAL SPECIFICATIONS	4
3.	INTERFACE SIGNALS	6
4.	ABSOLUTE MAXIMUM RATINGS	8
5.	ELECTRICAL SPECIFICATIONS	9
5.1	BLOCK DIAGRAM	9
5.2	TYPICAL ELECTRICAL CHARACTERISTICS	9
5.3	RECOMMENDED DRIVING CONDITION FOR LED BACKLIGHT	10
5.4	TIMING SPECIFICATIONS	11
6.	OPTICAL CHARACTERISTICS	15
7.	RELIABILITY TESTS / ENVIRONMENTAL	17
7.1	RELIABILITY CONDITIONS	17
7.2	ELECTROSTATIC DISCHARGE (ESD)	17
8.	HANDLING CAUTIONS	18
8.1	MOUNTING OF MODULE	18
8.2	PRECAUTIONS IN MOUNTING	18
8.3	ADJUSTING MODULE	18
8.4	OTHERS	18
9.	DEFINITIONS	19
10.	LIFE SUPPORT APPLICATIONS	19

Version: A

2022-02-09

1. General Description

- 7", Landscape, normally black, ADS type, transmissive, amorphous silicon TFT LCD module with 2 source driver IC (COG) + 1 gate driver IC(COG)
- Display Resolution: 800 x RGB x 480.
- Viewing angle (U/D/L/R): 80/80/80/80
- "Himax" HX8298-A x2 +HX8695E x 1
- Display up to 16.7M colors.
- 1-port LVDS.
- Backlight with 18 LEDs.
- HC front polarizer.
- "RoHS" Compliance.

2. Mechanical Specifications

The mechanical detail is shown in Fig. 1 and summarized in Table 1 below.

Table 1

Parameters		Specifications	Unit
Outline dimensions		167.70(H) x 109.45 (V) x 9.0 (D)	mm
	Bezel opening	156.2 (W) x 94.54(H)	mm
Color TFT	Active area	152.4 (W) x 91.44 (H)	mm
800 x RGB x 480	Display format	800 x RGB x 480	dots
000 X KGD X 400	Color configuration	RGB stripes	-
	Dot pitch	0.1905 (W) x 0.1905 (H)	mm
Backlight		White LED	-
Weight		Typ. 245	g

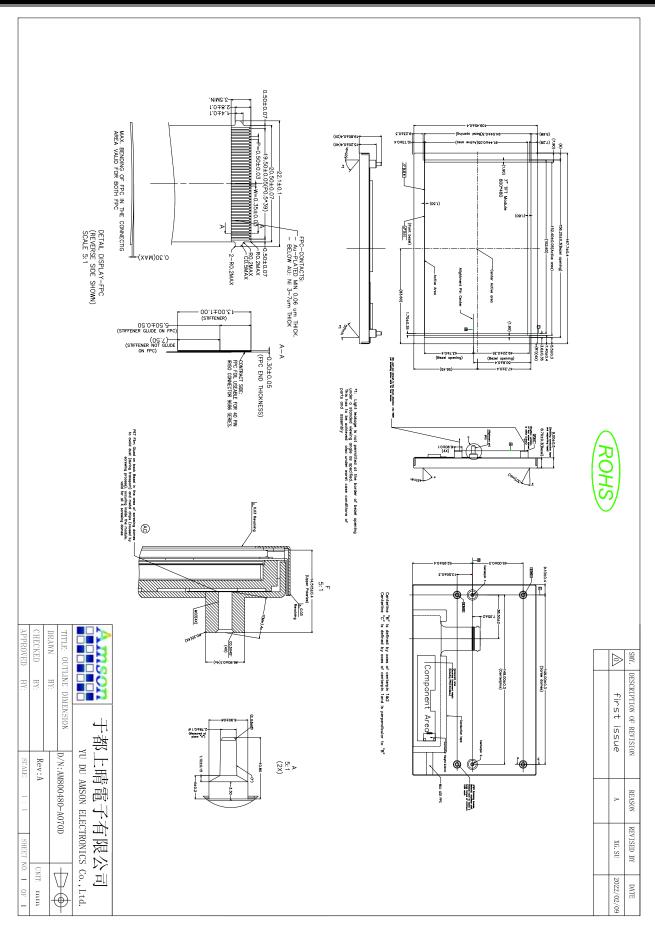


Figure 1: Module Mechanical Specification Drawing

Version: A

2022-02-09

3. Interface Signals

Table 2(a): Pin assignment 1

Pin No.	Symbol	Description
1	N/C	Reserved for supplier test, NC for customer
2	CS	SPI interface for supplier online test and programming use (Pull high for customer)
3	SCL	SPI interface for supplier online test and programming use (NC for customer)
4	SDA	SPI interface for supplier online test and programming use (NC for customer)
5	VCC	Power supply (3.3V)
6	VCC	Power supply (3.3V)
7	GND	Ground
8	GND	Ground
9	D0_N	LVDS data 0-
10	D0_P	LVDS data 0+
11	GND	Ground
12	D1_N	LVDS data 1-
13	D1_P	LVDS data 1+
14	GND	Ground
15	D2_N	LVDS data 2-
16	D2_P	LVDS data 2+
17	GND	Ground
18	CLK_N	LVDS clock-
19	CLK_P	LVDS clock +
20	GND	Ground
21	D3_N	LVDS data 3-
22	D3_P	LVDS data 3+
23	GND	Ground
24	VSFB	VSYNC waveform feedback
25	DISP_ON	Display on/off (black display),
26	HVR	Horizontally and Vertically Inverted
27	NTC2	Temperature Sensor Pin2

Version: A

2022-02-09

Table 2(b): Pin assignment 2

Pin No.	Symbol	Description
28	NTC1	Temperature Sensor Pin1
29	C3	Backlight Cathode 3
30	C3	Backlight Cathode 3
31	A3	Backlight Anode 3
32	A3	Backlight Anode 3
33	C2	Backlight Cathode 2
34	C2	Backlight Cathode 2
35	A2	Backlight Anode 2
36	A2	Backlight Anode 2
37	C1	Backlight Cathode 1
38	C1	Backlight Cathode 1
39	A1	Backlight Anode 1
40	A1	Backlight Anode 1

Version: A

2022-02-09

4. Absolute Maximum Ratings

The product or it's functions may subject to permanent damage if it's stressed beyond those absolute maximum ratings listed below. Exposure to absolute maximum rating conditions for extended periods may affect display module reliability.

Table 3: Absolute Maximum Ratings & Environmental Conditions

Item	Symbol	Min.	Max.	Unit
Digital supply voltage	VDD	-0.3	+3.96	V
Digital I/O input signals	VIO	-0.3	VDD+0.3	V
Single LED forward current	IF	-	95	mA
Total LED forward current	IF(Total)	-	285	mA
Relative Humidity (at 60°C, Note 4)	RH	-	90	%
Operating Temperature (Note 3)	Topr	-30	+85	°C
Storage Temperature	Tstg	-40	+90	°C

Note 1: Note 1: GND=VSS=0V.

Note 2:For LED backlight driving limit at other ambient temperature, please follow recommended derating profile in Section 5.3

Note 3:No condensation allowed under any condition.

Note 4: No performance guarantee below -30 °C.

[Caution]

Do not display fixed pattern for prolonged hours because it may develop image sticking on the display.

5. Electrical Specifications

5.1 Block Diagram

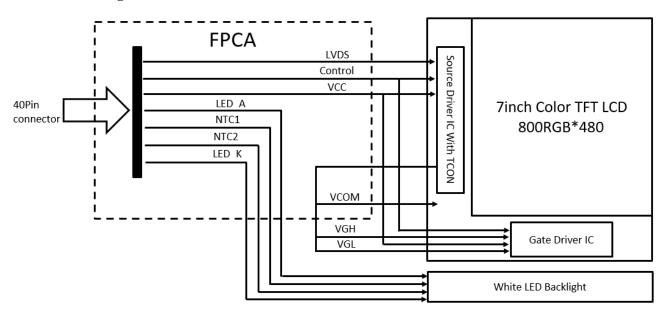


Figure 2: Block Diagram of module

5.2 Typical Electrical Characteristics

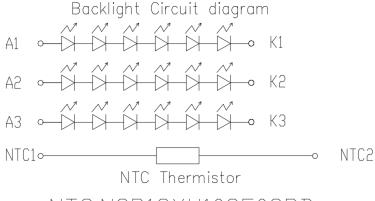
GND=0V, DVDD= 3.3V.

Table 4

Parameter	Symbol	Min.	Тур.	Max.	Unit
Power supply	VCC	3.0	3.3	3.6	V
Current supply	Ivcc(Note2)	-			mA
Driver input high signal voltage	VIH	0.7*VCC	-	VCC	V
Driver input low signal voltage	VIL	GND	-	0.3*VCC	V
LED Life Time (50%)	(Note3)	30000	-	-	hrs

- Note 1: There is tolerance in optimum LCD driving voltage during production and it will be within the specified range.
- Note 2: All white pattern.
- Note 3: The "LED Life Time" is defined as the time period when the brightness decrease to 50% of the initial value under continuous lighting at 25°C (dry condition) with the recommended driving current

Version: A


2022-02-09

5.3 Recommended Driving Condition For LED Backlight

Table 5	$(Ta = 25^{\circ}C)$
14010 5	(1u - 23 C)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit	Remark
Supply voltage of LED02 backlight	V _{LED}	Backlight current= 270mA Number of LED dies= 6x3pcs	16.8	18.6	21	V	Note 1
Supply current of single Backlight LED02 string	I _{LED12}	Per LED string	-	90	1	mA	Note 2,
Total Supply current of LED02 Backlight	I _{LED} (Total)	-	1	27	-	mA	Note 2.4
Backlight Power Consumption	P _{LED}	-	-	5.03	-	W	Note 3

Note 1: Backlight Circuit Diagram

NTC:NCP18XH103F0SRB

Note 2: The LED driving condition is defined for each LED module.

Input current = $90\text{mA} \times 3 = 270\text{mA}$

Note 3: Backlight power consumption is calculated by $I_{LED} \times V_{LED}$

Note 4: Backlight driving current best at 270mA or below, and should not significantly exceed 270mA at all temperature; otherwise, overheating may happen and may damage the backlight.

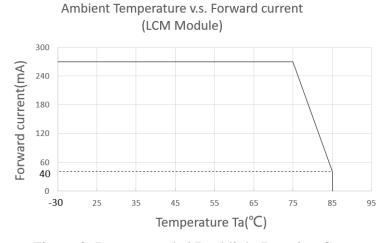


Figure 3: Recommended Backlight Derating Curve

5.4 Timing Characteristics

5.4.1 LVDS mode AC electrical characteristics

Table 6

	_	<u> 14010 0</u>	T	1	
Parameter	Symbol	Min	Тур	Max	Unit
Clock frequency	FLVCYC	24.2	26.4	38.7	MHz
Clock period	T_{LVCYC}	25.8		41.3	ns
1 data bit time	UI	-	1/7	-	T_{LVCYC}
Clock high time	T_{LVCH}	2.45	4	4.55	UI
Clock low time	T_{LVCL}	2.45	3	4.55	UI
Position 1	T_{POS1}	-0.2	0	0.2	UI
Position 0	T_{POS0}	0.8	1	1.2	UI
Position 6	T _{POS6}	1.8	2	2.2	UI
Position 5	T _{POS5}	2.8	3	3.2	UI
Position 4	T _{POS4}	3.8	4	4.2	UI
Position 3	T _{POS3}	4.8	5	5.2	UI
Position 2	T _{POS2}	5.8	6	6.2	UI
Input eye width	T _{EYEW}	0.6	-	-	UI
Input eye border	T_{EX}	-	-	0.2	UI
LVDS wake up time	TENLVDS	-	-	150	us
Differential input common	VCM	1	1.2	1.7- Vid /2	V
Mode voltage	V CIVI	1	1.2	1.7- VIU /2	V
Differential input high	Vth	_	_	+0.1	V
Threshold voltage	V (11			10.1	•
Differential input low	Vtl	-0.1	_	_	V
threshold voltage					
Differential input voltage	Vid	0.2		0.6	V

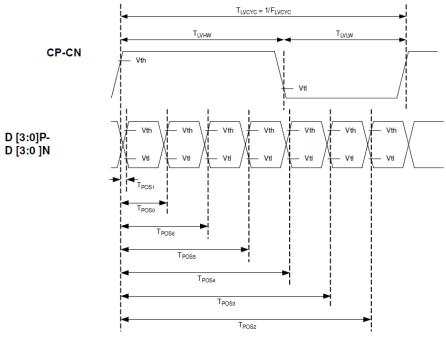
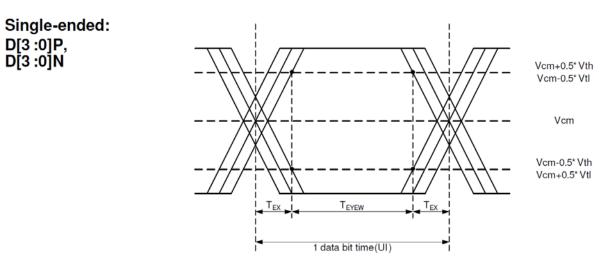



Figure 4.1: LVDS input timing

Differential: D[3:0]P-D[3:0]N

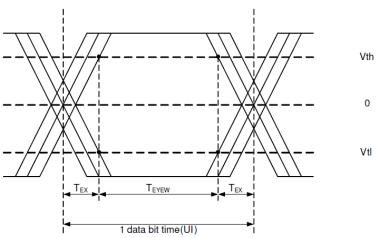
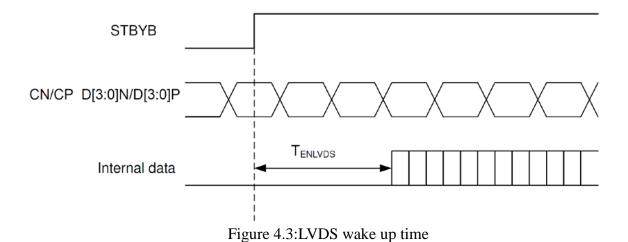



Figure 4.2: LVDS input eye diagram

5.4.2 LVDS signal timing

Table 7

Parameter	Symbol	Value			Unit	
	Symbol	Min	Тур	Max	Omt	
DCLK frequency	Fdclk	24.2	26.4	38.7	MHz	
Horizontal valid area	thd		800		DCLK	
1 horizontal line	th	824	832	1120	DCLK	
Vertical valid area	tvd		480		Н	
1 vertical field	tv	490	528	576	Н	
Frame rate	FR		60		Hz	

DE Mode

It just needs DE signal only, when DE only mode enable

Horizontal

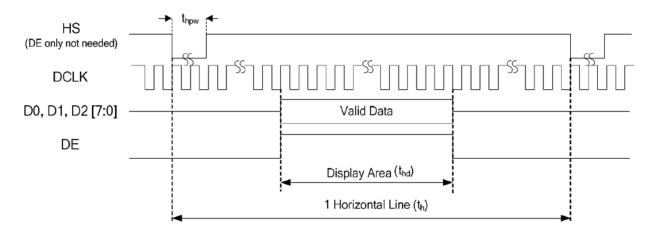


Figure 5.1: Horizontal input timing at DE only mode

Vertical

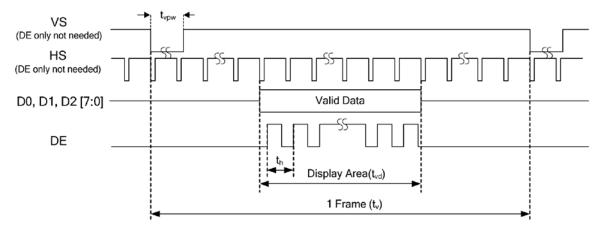


Figure 5.2 Vertical input timing at DE only mode

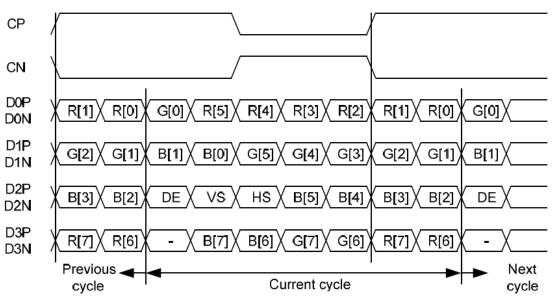
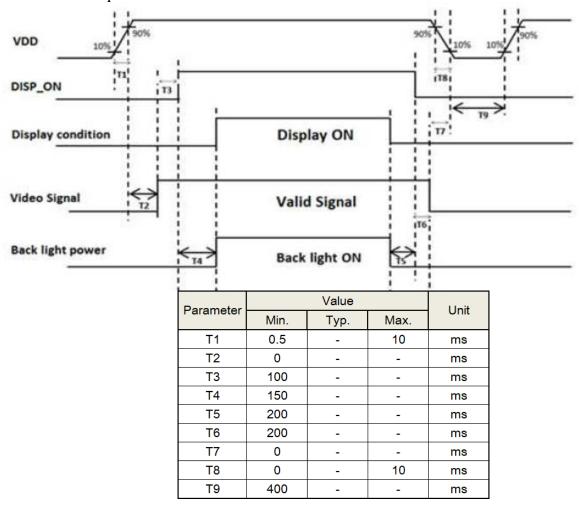



Figure 5.3:LVDS Input signal VESA format:

5.4.3 Power on sequence

DISP_ON is an active high signal. When this signal is low, the display will be in standby mode and nothing displayed on the screen.

Version: A

2022-02-09

6. Optical Characteristics

Conditions unless specified otherwise:

- $Ta = 25^{\circ}C$
- Supply voltage = 3.3 volts
- Elapsed time from switch on is greater than 30 minutes
- RGB, white and black test patterns only
- Factory settings
- Brightness = 100% unless specified
- Measurements are conducted at ambient temperature and perpendicular unless specified

Table 8

Items		Symbol	Condition		Min.	Typ.	Max.	Unit	Note
Response Time		T _R +T _F	Ta=-20°C	Viewing normal		- -	250	- ms	(Note 1)
			Ta=25°C	angle $\theta = \phi = 0^{\circ}$	1	1	40		
	12'	θ2	Ta=25°C	Center	-	80	-	deg.	(Note 2)
Viewing angle	6'	θ1			-	80	ı		
viewing angle	9'	φ2		CR>10	-	80	ı		
	3'	φ1			-	80	-		
Contrast Ratio		CR	Ta=25°C	Viewing normal angle $\theta = \phi = 0^{\circ}$	800	1000	-	1	(Note 3)
Brightness		Br	Ta=25°C		870	1000	1	cd/m ²	
	White	XW			0.280	0.310	0.340	-	(Note 4)
	Wille	Уw		Viewing	0.300	0.330	0.360	-	
	Red	XR				0.647	0.677	-	
Chromaticity	Red	УR	Ta=25°C	normal	0.307	0.337	0.367	_	
	Green $\frac{x_G}{y_G}$	XG	1a-25 C	angle	0.292	0.322	0.352	-	
			θ=φ=0°	0.594	0.624	0.654	-		
	Blue $\frac{x_B}{y_B}$	x_B			0.118	0.148	0.178	-	
				0.031	0.061	0.091	-		
NTSC Ratio			Ta=25°C		65	70		%	
Luminance Uniformity		ΔΥ9	Ta=25°C	9points	75			%	Note5

Note 1: The electro-optical response time measurements shall be made as Figure 6 by switching the "data" input signal OFF and ON. The times needed for the luminance to change from 10% to 90% s T_r , and 90% to 10% is T_f .

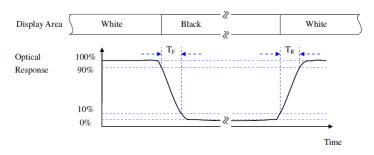


Figure 6: Response Time Testing

Note 2: The definitions of viewing angle.

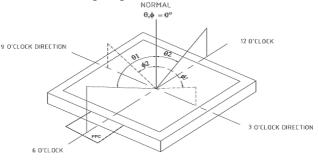
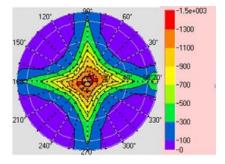



Figure 7

Note 3: Contrast measurements shall be made at viewing angle of θ =0° and at the center of the LCD surface by using DMS. Luminance shall be measured with all pixels in the view field set first to white, then to the dark (black) state. (See figure 7)

Luminace Contrast Ratio (CR) is defined mathematically.

Note 4: The color chromaticity coordinates specified in Table 8 shall be measured at the center of the panel.

ISO-Contrast Plot (for reference) (Ta=25°C)

Note 5: The White luminance uniformity on LCD surface is measured per VESA standard over 9 points and is then expressed as

Uniformity
$$\Delta Y = \frac{\text{Minimum Luminance of 9 points}}{\text{Maximum Luminance of 9 points}} \times 100 (\%)$$

Version: A

2022-02-09

7. Reliability Tests / Environmental

7.1 Reliability Conditions

Table 9: List of Reliability Tests

	Test	Symbol	Condition	Reference	Sample Qty
1	High Temperature Storage	HST	+90°C / 240 hrs	IEC60068-2-2 Bb	4pcs
2	Low Temperature Storage	LST	-40°C / 240 hrs	IEC60068-2-1 Ab	4pcs
3	High Temperature Operating (Note 1)	НОТ	+85°C / 240 hrs	IEC60068-2-2 Bb	4pcs
4	Low Temperature Operating	LOT	-30°C / 240 hrs	IEC60068-2-1 Ab	4pcs
5	Accelerated Humidity Test Operating	АНТО	+60°C / 90% RH / 240 hrs	IEC60068-2-78Cab	4pcs
6	Temperature Shock Test	TST	-30°C \Leftrightarrow +80°C, 30min/5min/30min,200cycles Non-Operating	IEC60068-2-14Na	4pcs
7	UV exposure resistance	UV	1KW Xenon/ 100 hrs Power off.	IEC 60068-2-5 Sa	2pcs
8	Mechanical Shock (Note 2)	-	3 directions: X,Y,Z axes Repeats:6 Peak acc.:100 G Pulse duration: 6 ms (half sine wave) Non-Operating	IEC 60068-2-27Ea	2pcs
9	Mechanical Vibration (Note 2)	-	3 directions: X,Y,Z axes Sweep time: 10 (1Oct/ min) Frequency: 10 -> 150->10 Hz 10-58 Hz: constant amplitude 0.75mm peak. 58-150Hz: constant acceleration 10g peak Sinusoidal, Non-Operating	IEC 00008-2-0FC	2pcs

Note 1: LCD panel surface temperature should not exceed 85°C.

Note 2: For module internal structure robustness test purpose only. Customer application cluster design should take care of overall mounting robustness with display module.

7.2 Electrostatic Discharge (ESD)

Table 10: ESD Test Conditions

Test	Condition	Method	Remark	Sample
				Qty
Human body model	 R = 330Ω, C = 150pF, Air discharge: ±15 KV to display surface Contact discharge: ±8 KV to metal frame 	IEC61000-4-2	Not operating	2pcs
Machine model	$R = 0\Omega$, $C = 200$ pF, ± 200 V to I/O pins	MIL-STD-883, method 3015	Not operating	

Note 1: The TFT-LCD panel and IC on module are sensitive to electrostatic discharge; please make sure equipments and operators are properly ground before and during handling

Note 2: As different customer application have different interfacing designs and assembly processes, the display module has no ESD protection circuitry. Customer is required to take special care on ESD level control in the assembly and test processes.

Version: A

2022-02-09

8. Handling Cautions

8.1 Mounting of module

- Please power off the display module before it is disconnected or connected to the application.
- If the connection to the application is not good, following problems may result.
 - 1. Significant noise on signals between display module and application
 - 2. Unstable display performance
 - 3. Parts on the module will be heat up or damaged
- The polarizer is made of soft material and is susceptible to flaw. The display must be handled with care.
- Protective film (Laminator) is applied on surface for protection against scratches and dirts. Please avoid electrostatic charge build-up when peeling off the laminator.

8.2 Precautions in Mounting

- When metal part of the TFT-LCD module (shielding lid and rear case) is soiled, wipe it with soft dry cloth.
- Wipe off water drops or finger grease immediately when found. Prolonged contact with water may cause discoloration or spots.
- The TFT-LCD panel module contains glass which breaks or cracks easily if dropped or bumped on hard surface. Please handle with care.
- The TFT-LCD panel and IC on module are sensitive to electrostatic discharge; please make sure equipments and operators are properly ground before and during handling.

8.3 Adjusting module

- Adjusting volumes on the rear face of the module have been set to its optimal before shipment. Therefore, do not change any adjusted values. If adjusted values are changed, the display may not perform to specification.

8.4 Others

- Do not expose the module to direct sunlight or intensive ultraviolet rays for prolonged hours
- Store the module at room temperature condition.
- If LCD panel breaks, liquid crystal may escape from the panel. Avoid bringing it to eyes or mouth contact. When liquid crystal sticks on hands, clothes or feet, wash it out immediately with soap.
- Observe all other precautionary requirements as in handling general electronic components.
- Please adjust the voltage of common electrode as materials of attachment by 1 module.
- Do not expose the display module to harmful gases such as acid and alkali gasses, which will corrode electronic components.
- Do not disassemble the display module because it can cause permanent damage and will void the warranty agreement.

Version: A

2022-02-09

9. Definitions

Data sheet status	
Objective	This data sheet contains target or goal specifications for product
Specification	development.
Preliminary	This data sheet contains preliminary data; supplementary data may be
Specification	published later.
Product	This data sheet contains final product specification.
Specification	
Limiting values	

Limiting values given are in accordance with the Absolute Maximum Rating. Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operating of the device at these or any other conditions above those given in the Characteristics sections of the specification is not implied. Expose to limiting values for extended periods may affect device reliability.

Device is functional within the limiting conditions doesn't imply the same performance over the covered conditions, customer is required to decide the best range for the final applications.

10. Life Support Applications

These products are not designed for use in life saving appliances, devices or systems where malfunctioning of these products can reasonably be expected to result in personal injury. Customers using or selling these products for use in such applications do so at their own risk and agree full non liability of Varitronix Limited for any damages or losses resulting from such improper use or sale